美國加州法院期透過數位方式管理證據生命週期,帶動司法效率提升

2024年9月23日起,美國加州洛杉磯高等法院於康普頓(Compton)與比佛利山莊(Beverly Hills)法院試行數位證據系統,旨於簡化小額訴訟程序,使訴訟當事人透過數位證據系統平臺進行數位證據開示,節省郵寄實體證據副本所花費的時間、人力、物力。洛杉磯高等法院為全美最大之一審法院,法院轄區人數逾1千萬人,其所推動之數位證據系統具參考價值。

以下說明數位證據系統的重點:

1.數位證據系統適用的案件範圍

適用於「小額訴訟當事人於聽證會前之證據開示程序」。

關於證據開示程序,訴訟當事人應至少於訴訟聽證會前10 日完成證據開示。證據開示程序的傳統做法為當事人將證據副本「郵寄」給對造,而數位證據系統允許訴訟兩造於聽證會前,以「電子方式」交換證據。

依加州法規定,小額訴訟指原告向被告(個人、企業或政府單位)請求給付的金額在1.25萬美元以下。

2.數位證據系統可上傳的數位證據類型

訴訟當事人輸入「案號、聽證會具體日期、個人資訊(電子信箱或手機號碼)及6位數字金鑰」以驗證身分、註冊數位證據系統帳號後,可於數位證據系統分批上傳多種文件格式,包含時戳證據(Time stamp evidence)、圖片、影片、文字檔(如Word、OpenOffice)、PDF檔案、HTML檔案、簡報檔案等。並勾選上傳資料之當事人身分(原告或被告),確認上傳證據。

當事人應於確認上傳之每筆證據的註解中,簡述(briefly)該證據資訊。

經當事人確認、成功上傳至數位證據系統的每筆證據,都會擁有其唯一的(unique)證據編號(Exhibit Number)。

該系統最終會製作出一份「涵蓋該案件所有數位證據資訊的證據清單(Exhibit List)」PDF檔案,包含:案號、數位證據編號、證據縮圖及證據之簡述資訊等資訊,以便當事人依證據清單,參考(refer to)證據編號進行證據開示。

3.數位證據系統的檔案權限控管之設定

(1)上傳、編輯、刪除權限

訴訟當事人可上傳數位證據。

於系統上傳、未確認送出數位證據的階段,當事人則可編輯、刪除數位證據。

(2)線上瀏覽權限

上傳證據之當事人、司法人員擁有線上瀏覽「所有經當事人確認上傳之數位證據」的權限。

於系統確認數位證據後,上傳證據之當事人可於系統「勾選欲共享之數位證據」後,輸入對造之姓名、電子信箱,與對造共享其指定之數位證據。

(3)下載權限

訴訟期間至結案後60日內,訴訟兩造均可於數位證據系統下載數位證據。

4.證據於數位證據系統的保存期限

於小額訴訟結案後60日內,系統將自動刪除該案上傳之數位證據。

美國加州推動數位證據平臺,使當事人於平臺驗證身分、上傳時戳等數位證據,由平臺產出涵蓋案號、證據編號及證據資訊之證據清單,透過系統之權限控管加強證據管理,以數位證據開示減輕傳統證據開示程序之負擔。關於司法資料交換,參照我國由司法院、法務部、臺灣高等檢察署、內政部警政署及法務部調查局於2024年4月正式啟用之「司法聯盟鏈共同驗證平台」,以「b-JADE證明標章」作為數位資料管理之標準,透過數位資料歷程管理與資料存證機制,鞏固證物保管機制。

上述之國內外趨勢之資料管理之作法可被資策會科法所發布之《重要數位資料治理暨管理制度規範(下稱EDGS)》所涵蓋,美國加州數位證據系統,透過管理證據生命週期之各階段,首先由當事人上傳、確認證物資訊及建置清單;其次設有不同程度的檔案使用權限;並訂有證據資料之保存期限,以便進行證據管理、加速司法訴訟之證據開示程序。而為方便資料管理者控管數位資料,EDGS同樣強調資料之生命週期管理,由「檔案標題或檔案的相關資訊,需要能對應特定的數位資料」,輔以建立「資料清單」有助於盤點多筆資料。並透過「控管資料權限」等保護措施,搭配「評估資料的維護期限」,以達到管理資料歷程的目標。建議企業將EDGS納入資料管理規劃,確保資料管控有方。

本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。

本文同步刊登於TIPS網站(https://www.tips.org.tw

相關連結
你可能會想參加
※ 美國加州法院期透過數位方式管理證據生命週期,帶動司法效率提升, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9271&no=67&tp=1 (最後瀏覽日:2026/01/12)
引註此篇文章
你可能還會想看
司法改革的一小步,替代性紛爭解決機制的一大步-談日本「ADR 利用促進法

美國參議院通過CISA網路安全資訊共享法案

  美國參議院於2015年10月27號通過網路安全資訊共享法(Cybersecurity Information Sharing Act; CISA)。本案以74票對21票通過,今年稍早眾議院通過類似法案,預計接下來幾周送眾議院表決。歐巴馬政府及兩院議員已就資訊共享法案研議多年,目前可望兩院就立法版本達成一致而立法成功。   主導本案的參議院情報委員會(Intelligence Committee)主席Richard Burr於法案通過後發表聲明表示,「這個作為里程碑的法案最終會更周全地保護美國人的個資不受外國駭客侵害。美國商業與政府機構遭受以日計的網路攻擊。我們不能坐以待斃」。副主席Sen. Feinstein於肯定法案對網路安全的助益之外,認為「我們在杜絕隱私憂慮的方面上盡了所有努力」。   CISA授權私人機構於遭受網路攻擊,或攻擊之徵兆(threat indicators)時,基於網路安全的目的,立即將網路威脅的資訊分享給聯邦政府,並且取得洩漏客戶個資的責任豁免權。基於同樣的目的,私人機構也被授權得以監視其網路系統,甚至是其客戶或第三人的網路。但僅以防禦性措施為限,並且不得採取可能嚴重危害他人網路之行動。相對於此,聯邦政府所取得該等私人機構自發性提供的網路威脅資訊,係以具體且透明的條款規制。此外,國土安全部(Department of Homeland Security)於符合隱私義務方針的方式下,管理電子網路資訊得以共享給其他合適的聯邦機構。檢察總長及國土安全部門秘書並建立聯邦政府接收、共享、保留及使用該等網路資訊的要件,以保護隱私。   相對於此,許多科技公司對此持反對態度,例如蘋果與微軟。隱私支持者更是於法案通過前後呼籲抵制,稱其為監視法。主要的論點圍繞在企業洩漏個資訊的寬鬆免責條款,這將會促使隱私憂慮。另一方面,法案反對者也不信任聯邦政府機構將會落實隱私保護,FBI、國家安全局(National Security Agency, NSA)及國家安全部則樂於輕易地取得、共享敏感的個資而不刪除之。   這些憂慮或許可以由法案投票前,網路法及網路安全學者共同發出的公開信窺知。「整體來說,(CISA)對有缺陷的網路安全中非常根本但真切的問題一無所助,毋寧僅是為濫權製造成熟的條件」。信中提到,該法案使聯邦機構得近用迄今為止公眾的所有資訊,並且對公司授權的範圍無明確界線,使公司對判斷錯誤的可能性毫無畏懼。這對於網路安全沒有幫助,方向應該是引導各機構提高自身的資訊安全及良好管理。

FCC第二號命令對我國必要轉播條款的啟示

歐盟人工智慧辦公室發布「通用人工智慧實踐守則」草案,更進一步闡釋《人工智慧法》之監管規範

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 歐盟人工智慧辦公室(European AI Office)於2024 年 11 月 14 日發布「通用人工智慧實踐守則」(General-Purpose AI Code of Practice)草案,針對《人工智慧法》(Artificial Intelligence Act, AIA)當中有關通用人工智慧(General Purpose Artificial Intelligence, GPAI)之部分,更進一步闡釋相關規範。 本實踐守則草案主要分為4大部分,分別簡介如下: (1)緒論:描述本守則之4個基本目標,包含協助GPAI模型提供者履行義務、促進理解人工智慧價值鏈(value chain)、妥適保障智慧財產權、有效評估且緩解系統性風險(systemic risks)。 (2)GPAI模型提供者:有鑒於GPAI模型對於下游系統而言相當重要,此部分針對模型提供者訂定具體責任。不僅要求其提供訓練資料、模型架構、測試程序等說明文件,亦要求制定政策以規範模型用途防止濫用。另於智慧財產權方面,則要求GPAI模型提供者遵守「歐盟數位單一市場著作權指令」(Directive 2019/790/EC)之規定。 (3)系統性風險分類法(taxonomy):此部分定義GPAI模型之多種風險類別,諸如可能造成攻擊之資訊安全風險、影響民主之虛假資訊、特定族群之歧視、超出預期應用範圍之失控情形。 (4)高風險GPAI模型提供者:為防範系統性風險之危害,針對高風險GPAI模型提供者,本守則對其設立更高標準之義務。例如要求其於GPAI模型完整生命週期內持續評估風險並設計緩解措施。 本守則發布之次週,近千名利害關係人、歐盟成員國代表、國際觀察員即展開討論,透過參考此等回饋意見,預計將於2025年5月確定最終版本。

TOP