新加坡金融管理局發布《資料治理與管理實務》資訊文件

新加坡金融管理局(Monetary Authority of Singapore,下文簡稱MAS)於2024年5月29日發布《資料治理與管理實務》(Data Governance and Management Practices: Observations and Supervisory Expectations From Thematic Inspections)文件。此文件係根據MAS於2022年至2023年期間針對國內系統性重要銀行(Domestic Systemically Important Banks,下文簡稱D-SIBs)進行「資料治理與管理架構」的主題式檢查結果加以研究與分析而作成,其內容包含MAS對於資料治理的期望、受檢銀行的優良實踐範例及缺失,希望未參與檢查的銀行與金融機構也能根據這份文件進行適當的改善措施。

MAS在《資料治理與管理實務》文件中提出關於五大主題的監管期待,簡要說明如下:

1.董事會和高階管理層的監督:
董事會和高階管理層應加強監督資料治理。例如,定期向董事會報告資料管理領域的重要問題;高階管理層應即時獲得準確且完整的相關資訊,並對資料風險進行分析。

2.設置資料管理單位:
銀行應建立資料管理單位,並為資料管理辦公室提供明確的任務授權,以利其監測資料的品質。

3.資料品質之管理與控制:
銀行應建立資料品質管理架構與流程,以確保資料在整個生命週期中是有品質的。例如,建立有效控制資料流的機制;建立資料品質指標或計分卡;使用終端使用者運算工具(end-user computing tools)處理資料時,應納入風險評估和控制架構來管理。

4.資料品質控制資料之問題識別與升級:
銀行應制定升級標準和行動計畫,以改善資料品質。另外MAS也建議銀行應該要有強大且完整的資料譜系(data lineage)來辨識資料問題並將之改善。

5.BCBS 239原則之擴大適用:
BCBS 239原則係巴賽爾銀行監理委員會(the Basel Committee on Banking Supervision)第239號規範:《有效風險資料聚合及風險報告原則》(Principles for effective risk data aggregation and risk reporting),適用於全球的系統性重要銀行(Global Systemically Important Banks),巴賽爾銀行監理委員會同時建議D-SIBs宜遵循此原則,因此MAS亦要求新加坡境內7家D-SIBs須遵守BCBS 239原則的相關規範。此外,MAS仍期待各銀行與金融機構可以擴大BCBS 239原則的適用範圍,例如在範圍內報告(in-scope reports,或稱主要風險報告)中納入反洗錢、稅務管理等面向。
由於金融服務是一個由資料驅動的產業,資料已然是金融業重要的戰略資產。MAS期盼這份文件能夠讓所有銀行及金融機構提升其資料治理能力,並針對內部的問題進行改善。

相關連結
你可能會想參加
※ 新加坡金融管理局發布《資料治理與管理實務》資訊文件, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9273&no=65&tp=1 (最後瀏覽日:2025/04/09)
引註此篇文章
你可能還會想看
Cell Therapeutics取得新藥專利

  生技公司 Cell Therapeutics Inc.(http://www.cticseattle.com/) 於週ㄧ (04.10.2006) 表示該公司已取得新的抗腫瘤藥物專利。   該件由美國專利暨商標局 (U.S. Patent and Trademark Office) 核准,並且為 Cell Therapeutic 之歐洲子公司所擁有之專利涵蓋了目前正進行臨床前測試的治療劑- CT-45099 ,以及其類似物,該治療劑屬於小分子的抗細胞骨架蛋白 (Tubulin) 藥劑。細胞骨架蛋白細形成微管 (Microtubule) 的主要成份,而 CT-45099 以及其類似物可藉由阻斷細胞骨架蛋白達到抵抗腫瘤的目的。   根據該公司表示,相較於其他腫瘤治療藥劑,如 TaxolR 以及 TaxotereR ,於細胞分裂時穩定細胞骨架蛋白並且防止其分解,以殺死腫瘤細胞; CT-45099 係於細胞分裂時阻斷細胞骨架蛋白的組裝,並且使細胞骨架蛋白處於不穩定的狀態,以殺死細胞。此外,該治療劑可被使用於治療結腸、肺、胃以及前列腺之腫瘤細胞株。   Cell Therapeutics 也表示,該新型抗細胞骨架治療劑並不容係受到多重抗藥性 (Multi-drug resistance, MDR) 的影響,而多重抗藥性是腫瘤細胞對標準化學療法所發展出的最常見抵抗方式之ㄧ。   Cell Therapeutics 所擁有的該專利預計在 2022 年 4 月到期。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

美國「刑事鑑識演算法草案」

  美國眾議院議員Mark Takano於2019年10月2日提出「刑事鑑識演算法草案」 (Justice in Forensic Algorithms Act),以建立美國鑑識演算法標準。依據該法第2條,美國國家標準與技術研究所(National Institute of Standard)必須建立電算鑑識軟體之發展與使用標準,且該標準應包含以下內容: 一、以種族、社會經濟地位、兩性與其他人口特徵為基礎之評估標準,以因應使用或發展電算鑑識軟體,所造成區別待遇產生之潛在衝擊。 二、該標準應解決:(1)電算鑑識軟體所依據之科學原則與應用之方法論,且於具備特定方法之案例上,是否有足夠之研究基礎支持該方法之有效性,以及團隊進行哪些研究以驗證該方法;(2)要求對軟體之測試,包含軟體之測試環境、測試方法、測試資料與測試統計結果,例如正確性、精確性、可重複性、敏感性與健全性。 三、電算鑑識軟體開發者對於該軟體之對外公開說明文件,內容包含軟體功能、研發過程、訓練資料來源、內部測試方法與結果。 四、要求使用電算鑑識軟體之實驗室或其他機構應對其進行驗證,包含具體顯示於哪個實驗室與哪種狀況下進行驗證。此外,亦應要求列於公開報告內之相關資訊,且於軟體更新後亦應持續進行驗證。 五、要求執法機關於起訴書或相關起訴文件上應詳列使用電算鑑識軟體之相關結果。

歐盟提出「一般資料保護規章」(草案)並審議,以因應未來聯網環境趨勢

  為因應近來智慧聯網(IoT)、巨量資料及雲端運算發展趨勢,為強化線上隱私權利及促進歐盟數位經濟的發展,歐盟執委會於2012年1月25日對於資料保護指令提出新的規章草案:「保護個人有關個人資料處理及自由流通規章(一般資料保護規章)」(Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the protection of individuals with regard to the processing of personal data and on the free movement of such data (General Data Protection Regulation)),以取代並廢除(repealed)原有「個人資料保護指令」規範,並修改(amend)「隱私與電子通訊指令」,預計在2013年6月進入歐洲議會、理事會及執委會的三方協商,若順利將在2014年通過,並在2016年生效。   「一般資料保護規章」(草案)中對於聯網環境及智慧化設備運行之因應,重要規範內容有(1)追蹤(tracking)與特徵分析(profiling):訂定第20條「特徵分析措施」(Measures based on profiling)規範條文,保障每個當事人皆有主張不被採取特徵分析措施(如個人傾向、工作表現、財務狀況、位址、健康、個人喜好、可信度)而致產生法律效果或顯著影響該個人的權利(2)被遺忘及刪除權(right to be forgotten and to erasure):訂定第17條,創設新的權利「被遺忘及刪除權」,用以幫助民眾處理線上資料,當其不希望自己的資料被利用且無合法理由保留時,資料將被刪除(3)資料可攜權利(the right to data portability):訂定第18條,當資料處理是以電子化方法,且使用結構性、通用的格式時,資料當事人有權利可以取得該結構性、通用格式下的個人資料,更容易自不同服務提供者間移轉個人資料。(4)當事人的同意要件:第4條第8款明定,不論何種資料處理情況時所需的同意,增列必須是明確(explicitly)同意之要件(5)「設計階段納入隱私考量」(privacy by design)、「預設隱私設定」(privacy by default):訂定第30條,要求資料控制者及處理者應實行適當的技術性、組織性措施,並考量科技發展水準,制定特定領域及特定資料處理情況的標準及條件,並且資料保護將會從產品及服務最初發展、設計時就考量隱私問題應對「設計階段納入隱私考量」及「預設隱私設定」提出標準及條件。   歐盟此次對於「一般資料保護規章」(草案)的修法進程,以及世界各重要國家的立場及反應態度,均值得後續密切觀察研析。

TOP