英國通訊局(The Office of Communications, Ofcom)下設之頻譜諮詢委員會(Ofcom Spectrum Advisory Board, OSAB)於2024年10月10日發布「2023年度報告」(Annual Report 2023),為Ofcom提供頻譜管理重要議題及發展趨勢建議。
本報告具體討論內容如下:
1. 行動網路與Wi-Fi混合共享:OSAB支持探索混合共享選項,建議Ofcom於確認國內網路使用需求時,將資料傳輸巔峰時段及區域間使用差異列入考量,同時優先關注網路韌性,確保混合許可模式之可行性。
2. 頻譜管理永續性:使用高效能之無線基礎設施及技術,將有助英國達成淨零排放目標。以現有設施中使用之銅線技術為例,其運作過程耗能較高,若可改用光纖等更高效能設備,將有助降低能源消耗,故OSAB建議Ofcom制定獎勵措施,促進低效能設備汰換。
3. 6G標準制定:OSAB認為國際電信聯盟(International Telecommunication Union, ITU)6G發展願景與「第三代合作夥伴計畫」(3rd Generation Partnership Project, 3GPP)規劃之路線圖具一致性,故鼓勵Ofcom積極參與3GPP相關標準制定工作。
4. 共享近用執照(Shared Access Licences, SAL)框架發展:OSAB肯定SAL對創新監管之貢獻,並表示「擴增實境」(Augmented Reality, AR)和「虛擬實境」(Virtual reality, VR)等新技術之應用將增加SAL使用需求,建議Ofcom可推動SAL自動申請流程,提高工作效率。
綜上所述,OSAB建議Ofcom探索創新頻譜共享機制、加強國際影響力、提升國內使用者滿意度,以促進6G發展與產業創新。
本文為「經濟部產業技術司科技專案成果」
美國FDA(Food and Drug Administration)於2019年11月22日發布「保密證書(Certificates of Confidentiality, CoC)」指引草案。保密證書之目的在於防止研究人員在任何聯邦、州或地方之民事、刑事、行政、立法或其他程序中被迫揭露有關研究參與者可識別個人之敏感性資料,以保護研究參與者之隱私。保密證書主要可分為兩種,對於由聯邦所資助,從事於生物醫學研究、行為研究,臨床研究或其他研究,於研究時會收集可識別個人之敏感性資料之研究人員而言,保密證書會依法核發予該研究人員,稱為法定型保密證書(mandatory CoC);而對於從事非由聯邦所資助之研究的研究人員而言,原則上保密證書不會主動核發予該研究人員,惟當研究涉及FDA管轄之產品時,可由FDA自行裁量而核發保密證書,稱為裁量型保密證書(discretionary CoC),本指引草案旨在提供裁量型保密證書之相關規範。 FDA建議裁量型保密證書之申辦者先自問以下四個問題,且所有問題之答案應該皆為肯定:(1)申辦者所參與之人體研究是否收集可識別個人之敏感性資料?(2)申辦者是否為該臨床研究之負責人?(3)申辦裁量型保密證書之人體研究是否涉及受FDA管轄之產品的使用或研究?(4)申辦者之研究措施是否足以保護可識別個人之敏感性資料之機密性? 於FDA完成審查後,將向申辦人傳送電子回覆信件,表明是否核准裁量型保密證書。若結果為核准,則該電子回覆信件即可作為保密證書。該保密證書之接受者應執行法律所規定以及FDA於電子回覆信件中所要求之保證事項,以保護人體研究參與者之隱私。
日本修訂大學與研究機關敏感技術出口管理指引,因應外為法相關行政命令修正擴大出口行為之認定範圍日本經濟產業省於2022年2月4日公告修正「大學與研究機關敏感技術出口管理指引」(安全保障貿易に係る機微技術管理ガイダンス(大学・研究機関用))。該指引係依據外匯與外貿法(外国為替及び外国貿易法,下稱外為法)及其行政命令訂定,用以協助大學與研究機關,建立符合出口管制法規之內控制度,防止關鍵技術外流。 經產省於2021年11月18日公告修正外為法第55條之10第1項授權訂定之行政命令「出口人法遵標準省令」(輸出者等遵守基準を定める省令の一部を改正する省令),強化「視同出口」(みなし輸出)行為管制之要件明確性。經上述行政命令修正,日本居民位於外國政府支配下,或其行動係經外國政府與組織指示,而受到外國政府與組織強烈影響之情形,視同非日本居民,向其提供敏感技術需申請出口許可。本次指引修正即以此為基礎配合調整相關內容,重點如下: 針對如何認定是否該當「視同出口」要件,追加說明模擬事例與判斷方式,例如:日本大學教授同時在外國大學兼職,又取得敏感技術時,是否該當「視同出口」要件,應以契約判斷或要求該教授應主動申報。 大學與研究機構之出口管理程序:就教職員與學生是否會在「視同出口」要件下,被認定為非日本居民,建議應由大學或機構內之相關部門於其到職或入學時,掌握必要資訊;技術提供方在提供技術前,需先確認技術取得方是否屬於「視同出口」要件下之非日本居民等。 增訂敏感技術出口人之義務:若需向直接取得敏感技術以外之人,獲取判定「視同出口」要件該當性之必要資訊,應訂定程序依此進行判定;大學或研究機構衍生新創事業若有涉及敏感技術出口之業務,大學或機構方應進行相關指導。 遠距工作與線上會議相關:應留意透過線上會議「提供技術」之可能性;存在僱傭關係但未入境日本,經遠距工作提供勞務者,視為非日本居民;於日本境內線上參加海外研討會時提供受管制技術,視同向境外出口技術而須申請許可。
英國政府公布「英國醫療器材監管的未來」公眾諮詢結果並確立未來監管方向英國藥物及保健產品管理局(Medicines and Healthcare Products Regulatory Agency, MHRA)於2022年6月22日公布「英國醫療器材監管的未來之公眾諮詢政府回應」(Government response to consultation on the future regulation of medical devices in the United Kingdom),確立未來醫材監管方向。本次諮詢收到將盡900件回應(民眾與業者大約各半),結果顯示民眾業者對於強化醫療器材安全監管的支持。 MHRA將強化MHRA的執法權力,以確保病患安全,並且關注健康不平等議題並減少AI偏見問題;其監管設計上會考量歐盟和全球標準,並致力於建立英國符合性評鑑(UK Conformity Assessed, UKCA)。MHRA於安全方面,將增加製造商、進口商與經銷商的責任,並要求有英國地址的負責人對瑕疵商品負擔法律責任(構成法律責任的要件與製造商同)。其亦將要求製造商賠償被不良事件影響的人、禁止行銷上使用引人錯誤之表示、導入醫材之單一識別碼(Unique Device Identifiers, UDI)與增加註冊所需提供之資料,且製造商須建置上市後不良反應監測系統並回報統計上顯著的不良事件趨勢。創新方面,MHRA欲增設「創新醫療器材上市管道」和「軟體醫材上市管道」,以顧及創新與軟體醫材特殊需求。針對一般軟體醫材(software as a medical device, SaMD)與人工智慧軟體醫材(AI as a medical device, AIaMD)的監管,MHRA僅欲於法規中增加「軟體」的定義,其他規範將由指引的形式公布。此外,其將AIaMD視為SaMD的一種,並不會額外訂定AIaMD相關規範。
美國加州「Asilomar人工智慧原則決議」美國加州議會於2018年9月7日通過Asilomar人工智慧原則決議(23 Asilomar AI Principles, ACR-215),此決議表達加州對於「23條Asilomar人工智慧原則」之支持,以作為產業或學界發展人工智慧、政府制定人工智慧政策之指標,並提供企業開發人工智慧系統時可遵循之原則。依此法案所建立之重要指標如下: (1)於研究原則上,人工智慧之研究應以建立對於人類有利之人工智慧為目標。 (2)於研究資助上,人工智慧之研究資助應著重幾個方向,如:使人工智慧更加健全且可抵抗外界駭客干擾、使人工智慧促進人類福祉同時保留人類價值以及勞動意義、使法律制度可以順應人工智慧之發展。 (3)於科學政策之連結上,人工智慧研究者與政策擬定者間應有具有建設性且健全之資訊交流。 (4)於研究文化上,人工智慧研究者應保持合作、互信、透明之研究文化。 (5)於安全性上,人工智慧研究團隊應避免為了研究競爭而忽略人工智慧應具備之安全性。 (6)人工智慧系統應該於服務期間內皆具備安全性及可檢視性。 (7)人工智慧系統之編寫,應可使外界於其造成社會損失時檢視其出錯原因。 (8)人工智慧系統如應用於司法判斷上,應提供可供專門人員檢視之合理推論過程。 (9)人工智慧所產生之責任,應由設計者以及建造者負擔。 (10)高等人工智慧內在價值觀之設計上,應符合人類社會之價值觀。 (11)高等人工智慧之設計應可與人類之尊嚴、權利、自由以及文化差異相互調和。 (12)對於人工智慧所使用之資料,其人類所有權人享有擷取、更改以及操作之權利。 (13)人工智慧之應用不該限制人類「客觀事實上」或「主觀知覺上」之自由。 (14)人工智慧之技術應盡力滿足越多人之利益。 (15)人工智慧之經濟利益,應為整體人類所合理共享。 (16)人類對於人工智慧之內在目標應享有最終設定權限。 (17)高等人工智慧所帶來或賦予之權力,對於人類社會之基本價值觀應絕對尊重。 (18)人工智慧所產生之自動化武器之軍備競賽應被禁止。 (19)政策上對於人工智慧外來之發展程度,不應預設立場。 (20)高等人工智慧系統之研發,由於對於人類歷史社會將造成重大影響,應予以絕對慎重考量。 (21)人工智慧之運用上,應衡量其潛在風險以及可以對於社會所帶來之利益。 (22)人工智慧可不斷自我循環改善,而可快速增進運作品質,其安全標準應予以嚴格設定。 (23)對於超人工智慧或強人工智慧,應僅為全體人類福祉而發展、設計,不應僅為符合特定國家、組織而設計。