美國勞工部(Department of Labor)於2024年10月發布「人工智慧及勞工福祉:開發人員與雇主的原則暨最佳實務」(Artificial Intelligence and Worker Well-Being: Principles and Best Practices for Developers and Employers)參考文件(下稱本文件)。本文件係勞工部回應拜登總統2023年在其《AI安全行政命令》(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence)中對勞工的承諾,作為行政命令中承諾的一部分,本文件為開發人員和雇主制定如何利用人工智慧技術開展業務的路線圖,同時確保勞工可從人工智慧創造的新機會中受益,並免受其潛在危害。
本文件以八項AI原則為基礎,提出最佳實踐作法,其重點如下。
1. 賦予勞工參與權(empowering workers):開發人員和雇主履行各項原則時,應該秉持「賦予勞工參與權」的精神,並且將勞工的經驗與意見納入AI系統整個生命週期各環節的活動中。
2. 以合乎倫理的方式開發AI系統:開發人員應為AI系統建立標準,以利進行AI系統影響評估與稽核,保護勞工安全及權益,確保AI系統性能符合預期。
3. 建立AI治理和人類監督:組織應有明確的治理計畫,包括對AI系統的人類監督機制與定期評估流程。
4. 確保AI使用透明:雇主應事先告知員工或求職者關於AI系統之使用、使用目的及可能影響。雇主及開發人員應共同確保以清晰易懂的方式公開說明AI系統將如何蒐集、儲存及使用勞工的個資。
5. 保護勞工和就業權利:雇主使用AI系統時,除應保障其健康與安全外,不得侵犯或損害勞工的組織權、法定工資和工時等權利。
6. 使用AI以提升勞工技能(Enable Workers):雇主應先了解AI系統如何協助勞工提高工作品質、所需技能、工作機會和風險,再決定採用AI系統。
7. 支援受AI影響的勞工:雇主應為受AI影響的勞工提供AI技能和其他職能培訓,必要時應提供組織內的其它工作機會。
8. 負責任使用勞工個資:開發人員和雇主應盡責保護和處理AI系統所蒐集、使用的勞工個資。
美國專利商標局(United States Patent and Trademark Office, USPTO)於2024年3月15日至5月14日間,就促進研發成果商業化之方法徵集公眾意見;本次議題包括: (1)在研發成果商業化的過程(尤其是利用智慧財產制度以進行技術移轉時),所遇到的最大挑戰及機會各為何?以及希望USPTO提供何種協助? (2)在進行綠色和氣候技術、關鍵和新興技術移轉時,有無遇到任何智慧財產相關的挑戰及機會,以及希望USPTO提供何種協助? (3)請列出可促進研發成果運用、綠色和氣候技術及關鍵和新興技術移轉的政策與作法; (4)請列出各利害關係人在界定潛在被授權人及進行技術移轉時,所面臨的智慧財產相關挑戰,以及現行制度有無需要改變,以減少這些挑戰; (5)請就USPTO於新冠肺炎疫情期間所推動,一用於媒合新冠肺炎治療技術供需雙方之「Patent 4合作夥伴平台計畫」(The Patents 4 Partnerships platform)進行評論,包含促成合作關係之作法; (6)請就USPTO於2022年7月參與之「世界智慧財產權組織(WIPO)綠色計畫」(WIPO GREEN)進行評論,包含USPTO可如何促進計畫的成功與擴大影響力; (7)請列出USPTO可協助特定人士、技術、產業、公司,降低研發成果運用過程中面臨挑戰之可能作法; (8)請列出USPTO可協助「代表性不足群體」(underrepresented group)、個體發明者、中小企業提升研發成果運用認知,及克服現行挑戰的作法; (9)請列出USPTO可協助少數群體服務機構(Minority Serving Institutions, MSIs)、傳統黑人大學(Historically Black Colleges and Universities, HUCUs)擴大其研發成果商業化的機會; (10)USPTO在促進研發成果商業化上,可以發揮的其他作用; (11)其他國家可更促進研發成果商業化的作法。
資通訊安全下之訊息分享與隱私權保障—簡析美國2015年網路保護法 因應使用「生成式AI(Generative AI)」工具的營業秘密管理強化建議2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。 該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。 實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之: 一、人員面: 1.員工(教育訓練、合約) 在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。 在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。 2.生成式AI工具提供者(合約) 針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。 二、技術方面: 建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。 綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
德國將放寬非基因改造標示法規德國聯邦食品農也消保部(BMELV)發言人宣布,針對非基因改造食品標示制度之修正,今(2008)年初已達成政治協商,未來德國的非基因改造食品標示,將會容許那些在無可得替代產品的情形下而使用了基因改造維他命、添加物或加工輔助用料等基因改造產品之終端食品,標示為非基因改造食品。如此一來,那些使用目前只能以基因改造加工製成之維他命(如維他命B21、lyside等)所飼養之動物,日後動物來源食品以其作為原料時,這些食品將來也可以標示為非基因改造。此修法預計可在明年初完成實施。 德國此次修法目的,實係為了促進食品產業使用非基因改造標示。自從1990年建立非基因改造食品專有之標示制度起,動物來源食品如要作非基因改造標示,必須連在飼養時都使用非基因改造飼料,但食品產業卻表示此規定審為嚴苛且維持基因改造聲明所需的文件繁多,此機制實際上根本難以運用。BMELV為了促進食品產業使用非基因改造標示,遂決定修法放寬標準。 然而,這樣的修法仍然引起部分反對意見,例如德國食品產業聯盟(German food industry federation)即表示,非基因改造標示應當只能給予完全未使用基因改造之產品,其他產品則應使用諸如未含基因改造植物之類的聲明,否則就是誤導民眾之行為。此外,假如標有非基因改造標示的食品以此種方式使用過基因改造材料的話,更可能會折損非基因改造食品標示可性度。