美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

資訊工業策進會科技法律研究所

2025年06月04日

美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。

壹、事件摘要

美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。

生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。

貳、重點說明

一、生成式AI模型訓練及模型權重對重製權之侵害

使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]

在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。

著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]

二、合理使用

對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]

(1) 作品轉化性須視模型目的及佈署判斷

報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]

有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]

(2) 受著作權保護作品之表達性

AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。

(3) 使用作品之合理比例

AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。

在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。

(4) 影響原作品之潛在市場或價值

報告中點出三項生成式AI訓練可能造成的市場危害。

A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。

B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]

C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]

三、 授權使用

對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]

參、事件評析

AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。

值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。

同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。

美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。

資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。

本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。

[1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf

[2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19)

[3]supra note 1, at 26.

[4]Id. at 27.

[5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。

[6]Id. at 28.

[7]Id.

[8]Id. at 30.

[9]Id. at 36-37.

[10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。

[11]Id. at 46.

[12]Id.

[13]Id. at 47.

[14]Id. at 48.

[15]Id. at 54.

[16]Id. at 60.

[17]Id. at 65.

[18]Id. at 65-66.

[19]Id. at 66-67.

[20]Id. at 85.

[21]Id. at 106.

[22]Id. at 107.

[23]Id.

本文同步刊登於TIPS網站(https://www.tips.org.tw

※ 美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9352&no=86&tp=1 (最後瀏覽日:2025/10/16)
引註此篇文章
你可能還會想看
德國制定衛星資料保護專法,約束衛星地理資料商業性的利用

  今年年初德國聯邦政府向參議會提出「衛星資料保護法(SatDSiG)草案」,為國家以外的衛星資料利用,制定明確的規範。該草案將是歐洲第一個針對此議題所提出的草案。   該草案指出,利用「地表遙感偵查系統(Erdfernerkundungssystem)」所得資料或其所衍生的產品,不僅對國家軍事、外交安全帶來威脅,也可能造成個人隱私權的侵害。   該草案其他內容包括,所有「地表遙感偵查系統」的經營均須經過政府許可且受公權力監督。業者在接受客戶委託時,須特別注意是否有任何危害到德國國家安全的可能。其中判斷的標準如,所得資料涉及的內容、委託者身分、受委託偵測的地區、受委託的時間。如經衡量有涉及國家安全,則該資料的散佈須得政府的同意。   草案所稱衛星資料衍生產品例如照片、雷達資料以及其他經數位化商品如手機定位系統服務。違反者將面臨最高5年徒刑或50萬歐元罰金。   德國國會經濟委員會在9月10日針對該草案舉辦公聽會。會中隱私權保護團體也表達支持制定該法,各界亦贊同以專法約束具商業性的衛星資料取得利用,以保護個人隱私權。隱私權團體進一步表示,所有的衛星資料都涉及到地理資料,當衛星地理資料與其他可供識別個人身分的資料結合,則威脅到個人隱私權,而這些資料不當使用對於公眾人物格外敏感。   Google則表示,該草案適用客體應明確排除如搜索引擎等服務,且Google針對搜尋結果的圖片上網前,均會檢查其內容是否不當或違法。

美國聯邦貿易委員會插手企業資訊安全引起爭議

  美國聯邦貿易委員會(Federal Trade Commission, FTC)於2013年8月29日對位於亞特蘭大的一家小型醫療測試實驗室LabMD提出行政控訴,指控LabMD怠於以合理的保護措施保障消費者的資訊(包括醫療資訊)安全。FTC因此依據聯邦貿易委員會法(Federal Trade Commission Act, FTC Act)第5條展開調查,並要求LabMD需強化其資安防護機制(In the Matter of LabMD, Inc., a corporation, Docket No. 9357)。   根據FTC網站揭示的資訊,LabMD因為使用了點對點(Peer to Peer)資料分享軟體,讓客戶的資料暴露於資訊安全風險中;有將近10,000名客戶的醫療及其他敏感性資料因此被外洩,至少500名消費者被身份盜用。   不過,LabMD反指控FTC,認為國會並沒有授權FTC處理個人資料保護或一般企業資訊安全標準之議題,FTC的調查屬濫權,無理由擴張了聯邦貿易委員會法第5條的授權。   本案的癥結聚焦於,FTC利用了對聯邦貿易委員會法第5條「不公平或欺騙之商業行為(unfair or deceptive acts)」的文字解釋,涉嫌將其組織定位從反托拉斯法「執法者」的角色轉換到(正當商業行為)「法規與標準制訂者」的角色,逸脫了法律與判例的約束。由於FTC過去曾對許多大型科技公司(如google)提出類似的控訴,許多公司都在關注本案後續的發展。

中國大陸科技部公布參與2013年度科技型中小企業創業投資引導基金階段參股的創業投資機構名單

  根據中國大陸科學技術部(以下簡稱科技部)、財政部2013年11月8日以國科發計〔2013〕647號公布之<科技部、財政部關於2013年度科技型中小企業創業投資引導基金階段參股項目立項的通知>,確定計有21家創業投資機構參與本年度階段參股之立項項目,計劃資助金額約人民幣8億元。   按「科技型中小企業創業投資引導基金」係中國大陸財政部及科技部為貫徹<國務院實施《國家中長期科學和技術發展規劃綱要(2006至2020年)若干配套政策》>,支持科技型中小企業自主創新,而於2007年7月6日公布<科技型中小企業創業投資引導基金管理暫行辦法>。其中第3條規定:「引導基金的資金來源為,中央財政科技型中小企業創新基金;從所支持的創業投資機構回收和社會捐贈的資金」;第8條第一項前段規定:「本辦法所稱的創業投資企業,是指具有融資和投資功能,主要從事創業投資活動的公司制企業或有限合夥制企業」。   中國大陸政府希冀透過引導基金的協助,鼓勵當地創投業者參與引導基金支持的研發項目,並以「創業投資企業」或「創業投資管理企業」等方式,對於從事科技研發的中小企業提供實質資金協助,其具體鼓勵的方式依前述辦法第5條規定可為階段參股、跟進投資、風險補助等。以本次公布之通知為例,其所稱「階段參股」是指引導基金向創業投資企業進行股權投資,並在約定的期限內退出(參股期限一般不超過5年)。而符合該辦法規定條件的創業投資機構作為發起人,發起設立新的創業投資企業時,可以申請階段參股。   近來我國主管機關為促進經濟發展,不斷思索鼓勵創業、就業之措施,或許從創投面提供實質之協助也是參酌因素之一,其他國家或地區的具體措施及內容似值得我們後續觀察、研究。

美國合夥團體近期發展報告—由近10年有限合夥等團體資產與數量走勢談起

美國合夥團體近期發展報告—由近10年有限合夥等團體資產與數量走勢談起 科技法律研究所 法律研究員 劉得正 101年4月26日 壹、前言   根據美國最新 (2011) 公布「國內稅收收入統計報告書」 (Internal Revenue Service Statistics of Income Bulletin Fall 2011 Washington, D.C. )[1]顯示,2000年至2009年間,美國有限合夥(Limited Partnership,LP)等合夥團體在數量與資產分佈上,有重大改變,簡要分析說明如下。 貳、美國有限合夥發展現況 一、各類合夥團體[2]總體數量呈現穩定成長   查美國國稅局最新 (2011) 發表之統計資料發現,至目前為止合夥團體仍就受到投資者的青睞。至2009年為止,以合夥身分報稅之企業,共計[3]3,168,728家,合夥人總數達21,141,979人,其申報擁有之總資產 (assets) 則達到約18.8兆美元。相對於2008年[4],合夥團體數量成長約2萬餘家,成長幅度0.7%;合夥人總數增加184萬餘人,成長幅度9.5%。值得注意的是,這是在2008年次級房貸風暴發生後,第二年成長幅度在1%左右,在2000年至2007年間,合夥數量成長幅度在3.6%-8.5%間。   數據顯示資產在1億美元以上的合夥團體,共有1萬8千餘家,占合夥團體申報資產72.3%,表示在美國合夥團體絕非僅受中小企業的偏愛。另外,若從行業別來看[5],金融保險業之合夥團體申報資產占全體54.4%,位居第一;其次為不動產相關業,占全體之23.7%。 二、有限合夥數量持平而獲利維持優勢   在所有以合夥身分報稅之團體中,有限合夥LP此種合夥形式,仍表現十分亮眼。在盈利 (Profits) 表現上,有限合夥2009年盈利金額[6]約達1393億美元,占全部合夥團體盈利34%。事實上自2000年起,有限合夥LP盈利金額占合夥團體總獲利比例,始終維持在31%-39%間。   至於在數量上,有限合夥LP則表現持平。2000年至2005年間,有限合夥數量以和緩幅度上升,2006年起則略微下降;以2008年至2009年間為計[7],有限合夥LP數量別為411,698家與396,611家,占總數12.5%。 三、有限責任公司(Limited Liability Company, LLC)數量大幅成長   相對於有限合夥LP在盈利上的表現,有限責任公司LLC則在數量上有驚人表現。2009年間有限責任公司LLC數量達到1,969,446家,占合夥團體總數62.2%[8]。與2008年相比,成長幅度達到3.8%[9],遠高於合夥團體總成長幅度0.7%。事實上自1995年起,有限責任公司LLC的數量每年皆有大幅度成長。2009年與1995年相比,有限責任公司LLC數量成長達15倍以上。且自2002年起,有限責任公司LLC數量便占合夥團體總數量50%以上[10]。   至於在盈利 (Profits) 方面,有限責任公司2009年則達到約889億美元。相較於有限責任公司LLC在數量上占總數62.2%,獲利量則僅占所有合夥團體21.6%[11],主要原因為其損失比例過高所致[12]。惟值得注意的是,在2008年發生次級房貸風暴前,有限責任公司LLC盈利占全體合夥團體比例亦約在3成左右,與有限合夥相近。但在2008年有限責任公司盈利則下降為11%左右[13]。 四、普通合夥( General Partnership, GP)數量快速萎縮   另一項常見的合夥團體,為全體合夥人負無限責任之普通合夥GP。觀察本次統計發現,在2009年間,普通合夥GP數量為624,086家,相較於2008年669,601家,下降6.8%。且與1995年1,167,036家相比,更下降53.5%。顯見普通合夥GP在數量上呈現快速萎縮之趨勢,而逐漸不受到美國投資者的青睞[14]。至於在盈利表現上,除2009年約為621億美元外,2000年至2009年間皆在700-900億美元間起伏。 參、趨勢分析   針對上述針對美國近期合夥團體發展之歸納,本文提出下列看法: 一、稅制改變造成有限責任公司LLC數量成長   依據美國稅法規定,一般公司(Corporation)與合夥團體最大的差異在於,一般公司(Corporation)具備課稅主體地位,而公司在課稅後 尚須就股東個人所得再次課稅,形成雙重課稅(Double Taxation)。反之,合夥團體採單層課稅(Pass Through Taxation)方式[15],多半情況下納稅價額較低。因此,有限合夥LP等相關合夥組織過去十分受到投資人喜愛。   相較下,有限責任公司(LLC)之定位究竟屬於一般公司法人(C corporation)或是合夥,在發展初期並不明確,而未受到投資者廣泛運用。但此情況在1996年改採「勾選原則」(Check The Box Rule)後有了改變。在勾選原則下,除權益得公開交易之企業必須以一般公司法人(C corporation)方式課稅外,容許非公司型組織(unincorporated entities)可以自由選擇稅制[16]。此稅制上的改變,使得有限責任公司LLC得排除雙重課稅的不利,而享有合夥團體單層課稅之優惠。本文推測,1996年起有限責任公司 LLC 在數量上大幅度的成長,應係與此有關。 二、有限合夥LP在金融投資相關行業的運用未受影響   從數據上看來,相較於有限責任公司LLC數量的大幅提升,有限合夥LP則未出現明顯的排擠效益。有限合夥LP數量持續維持在40萬家左右。且如前述所提,有限合夥LP擁有相當高的獲利能力 ( 高達1393億美元 ) ,而深入觀察可發現,當中包括創業投資等「其他金融投資活動」 (Other financial investment activities)[17]獲利高達716億美元[18]。顯見 有限合夥LP在金融投資相關產業仍具有關鍵重要性。   從本次美國所提出的稅收統計報告可以發現,毋論是有限合夥LP抑或是有限責任公司LLC之組織形態,在未來都將具有相當重要性。面對如此之發展,我國實應思考立法開放此等新型態商業組織之可能。因唯有商業組織多元化的發展,才有機會使更多投資者找到符合其個人需求之投資模式,將資金投入市場,進而促進資金的流通與經濟的發展。在面對全球化的今日,各國間無不為吸引資金進入,爭相採取不同開放手段的此刻,謹慎而適度地開放商業組織政策,將能為國家競爭力帶來深遠的助益。 [1]Nina Shumofsky & Lauren Lee, Partnership Returns, 2009 , Internal Revenue Service Statistics of Income Bulletin Fall 2011 Washington, D.C. 68 (2011). [2]此處合夥團體是指依據美國國內稅法 (Internal Revenue Code, IRC) Subchapter K納稅之企業。依據IRC規定,商業團體報稅時,需依據其組織性質不同,分別按Subchapter C、Subchapter S、Subchapter K進行報稅。原則上一般公司 (Corporation) 應依據Subchapter C申報;符合Subchapter S條件之公司 (Corporation) 則可依Subchapter S申報,亦即俗稱之S公司;至於其他非公司 (Corporation) 之企業,則可依據「勾選原則」(Check The Box Rule)選擇依Subchapter C 或 Subchapter K進行報稅,包括有限合夥、普通合夥、有限責任公司、有限責任合夥、有限責任有限合夥。其中有限責任合夥是指在普通合夥基礎下,使普通合夥人無需為其他合夥人不當或過失行為負責之組織;如是在有限合夥基礎下,賦予普通合夥人此有限責任範圍,則為有限責任有限合夥。 See Internal Revenue Code, 26 U.S.C. §§ 1-9834. (2012) [3]Nina Shumofsky & Lauren Lee ,supra note 1, at 84. [4]id., at 70. [5]id., at 72. [6]惟其金額卻由2008年約1782億美元,下降為1393億美元,Id., at 156-7. [7]Id., at 156-7. [8]Id., at 73. [9]Id., at 68. [10]Id., at 73. [11]Id., at 75. [12]Id., at 151. [13]Id., See Figure I, at 75. [14]至於以普通合夥為基礎所衍生的有限責任合夥,在數量上至2009年間僅達到117,660家,並未因普通合夥下降而大幅提升。See id ., at 157. [15]參見羅怡德,〈美國「有限合夥」之介紹與討論〉,《社經法制論叢》,第6期,頁193以下(1990)。 [16]Robert W. Hamilton著,齊東祥譯,《美國公司法(The Law of Corporations)》,法律出版社,第5版,頁26-27 (2007)。 [17]依據北美行業分類系統 (The North American Industry Classification System, NAICS) 定義,「其他金融投資活動」 (Other financial investment activities) 係指:1.除銀行、證券商、商業契約經銷商外,其他買賣金融契約之主體;2.除證券商、商業契約經紀人外,其他買賣金融契約之代理人或經理人;3.除證券商或商業契約經銷商外,提供其他投資服務,包括投資組合管理、投資諮詢、信託、保管服務等。available at http://www.census.gov/cgi-bin/sssd/naics/naicsrch?code=5239&search=2007%20NAICS%20Search (last visited 04/18,2012) [18]supra note 1, at 156.

TOP