通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

資訊工業策進會科技法律研究所

2025年08月06日

歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。

壹、事件摘要

歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。

由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。

AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。

貳、重點說明

一、制定並更新模型文件(措施1.1)

透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。

前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。

除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括:

(一)、一般資訊General information

1.模型提供者法律名稱(Legal name)

2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。

3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。

4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。

5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。

(二)、模型屬性(Model properties)

1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。

2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。

3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。

4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。

(三)、發佈途徑與授權方式(Methods of distribution and licenses)

1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。

2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。

(四)、模型的使用(Use)

1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。

2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。

3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。

4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。

5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。

(五)、訓練過程(Training process)

1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。

2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。

(六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation)

1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。

2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。

3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。

4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。

5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。

6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。

7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。

8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。

(七)、訓練期間的計算資源(Computational resources (during training))

1.訓練時間(Training time):所測量期間及其時間的描述。

2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。

3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。

(八)、訓練及推論的能源消耗(Energy consumption (during training and inference))

1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。

2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。

二、提供GPAI模型相關資訊(措施1.2)

通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。

於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。

三、確保資訊品質、完整性及安全性(措施1.3)

GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。

參、事件評析

一、所要求之資訊完整、格式標準清楚

歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。

二、表格設計考量不同利害關係人的資訊需求

GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。

三、配套要求公開並確保資訊品質

該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。

四、以透明機制落實我國AI基本法草案的原則

我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。

透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。

本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。

本文同步刊登於TIPS網站(https://www.tips.org.tw

[1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30)

[2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

你可能會想參加
※ 通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9382&no=0&tp=1 (最後瀏覽日:2025/11/18)
引註此篇文章
你可能還會想看
美國最高法院裁定暫停執行環保署「清潔電力計畫」

  美國最高法院在2016年2月9日,以暫時處分裁定美國環保署在「清潔電力計畫」(Clean Power Plan)下所擬訂的「對固定污染源的碳排指引:電業發電單位」( Carbon Pollution Emission Guidelines for Existing Stationary Sources: Electric Utility Generating Units ),在北新(Basin)電力公司等對其所提起訴訟期間,暫緩實施。   所謂環保署「清潔電力計畫」(Clean Power Plan),係為因應氣候變遷,在2015年8月由美國總統在演說中公布,並於同年10月由美國環署公布「對固定污染源的碳排指引:電業發電單位」最終內容。該計畫的具體目標乃以2005為標準,在2030減少碳排32%,各州並得自行訂訂計畫;預期的計畫效果則包含:保護一般的美國家庭、促進經濟,與協助一般美國家庭節省費用。   由於該案涉及大規模以天然氣、風力與太陽能取代燃煤電廠,2015年的10月23日至11月5日間,由北新與其他近60家電業向聯邦哥倫比亞特區上訴法院(United States Court of Appeals for the District of Columbia Circuit)提出申請暫緩實施之聲請。2016年1月21日 該上訴法院駁回聲請,同月26日原本提出聲請的電業再向最高法院提出暫緩實施之聲請。   在向最高法院的聲請中,業者主張:因系爭指引所規範排放限制量為任何現行發電業者(Electricity Generating Units, EGUs)無法透過現行科技或流程改善單獨達成,將迫使整個電力產業作出轉變。業者並指出,由於淘汰既有電廠與建立新的再生能源計畫皆須長時間的努力來執行,若欲在2022年達成相關目標,電業必須現在就展開行動。   而最高法院也認同業者的主張,指出:因訴訟曠日廢時,若不暫緩實施系爭指引,立即、無法回復、且特別重大的損害將持續發生;且美環署仍將取得該計畫所欲取得之效果,縱使系爭指引最終被廢止。   基於上述理由,最高法院以暫時處分裁定系爭措施暫緩實施。

美國聯邦巡迴上訴法院判決美國專利法第271條(f)項不適用於方法專利

  繼美國最高法院於Microsoft Corp. v. AT&T Corp. 做出與專利法治外法權有關的判決後,美國聯邦巡迴上訴法院於2009年8月19日再次做出限縮解釋專利法第271條(f)項於美國境外的效力。   美國專利法第271條(f)項規定未經許可提供或使人提供專利產品之元件,將之由美國供應(“supply”)至美國境外完成組合,亦視為侵害該專利產品之專利權。此項規定為美國國會為防範企業藉由在美國境內製造非專利保護之零組件後再運送之海外進行組合以規避專利侵權責任而制定。之後,在實物案例中,關於第271條(f)項之解釋與適用範圍產生諸多爭議。美國最高法院於其在2007年Microsoft Corp. v. AT&T Corp. 中強調不應擴張解釋第271條(f)項之文字。   於Cardiac Pacemakers Inv. V. St. Jude Medical Inc. 一案中,原告Cardiac Pacemakers控告被告St. Jude Medical所販賣的植入式心臟整流去顫器 (implantable cardioverter defibrillator)之使用會侵犯原告所擁有的一個利用植入式心臟刺激器治療心律不整的方法專利 (a method of heart stimulation using an implantable heart stimulator)。本案的爭點在於被告銷售可實施原告美國專利方法的產品或裝置讓該專利方法於美國境外被實施的行為是否構成第271條(f)項之侵害。美國聯邦巡迴上訴法院推翻其於2005年之判決(Union Carbide Chemicals Plastics Technology Corp. V. Shell Oil Co.),判定專利法第271條(f)項不適用於方法專利。亦即,被告銷售可實施原告美國專利方法的產品至海外的行為不構成第271條(f)項所規定之侵權行為。   此判決對原告Cardiac Pacemakers之衝擊可能較小,因其專利範圍除方法請求項外,亦包含物品請求項,原告還可藉由其物品請求項獲得侵權損害賠償。但此案可能對僅能以方法申請專利的產業如生技藥業(某些診斷及檢驗僅能以方法申請專利)及軟體業造成較大的影響。

美國《代幣分類法》(Token Taxonomy Act)草案

  目前,美國證券管理委員會(U.S. Securities and Exchange Commission, SEC)對於數位貨幣的態度傾向於將代幣視為有價證券。《代幣分類法》(Token Taxonomy Act)草案則是持反對意見的聲浪¬,由美國眾議員Warren Davidson為首,並且獲得跨黨派多位眾議員的支持。《代幣分類法》主要的訴求是希望可以將數位代幣排除於證券,進而排除虛擬貨幣之稅務。重點有三: 修正《證券交易法》,將數位代幣排除於證券 將「數位代幣」(Digital Token)定義為驗證交易或遵循規則防止交易被竄改之「數位單元」(Digital Unit,以電腦可讀取的形式儲存,用於表彰經濟、財產上權利,或存取權限)。同時,在原先「證券」(Security)的定義中,排除「數位代幣」;另將證券「交易」(Exchange)交易排除數位貨幣適用。 擴張銀行之定義 修改「銀行」之定義。原先《1940年投資顧問法》和《1940年投資公司法》所指之「銀行」,包括「取得存款或執行信託權利(Fiduciary Powers)」等與准許經營銀行執行雷同事業者,是否為公司不在所問(Incorporated)。《代幣分類法》將之擴張為「取得存款、提供保管服務(Custodial Services)或執行信託權利」。 修正將虛擬貨幣視為免課稅對象 虛擬貨幣(Virtual Currency)定義為表彰數位價值之交易媒介且不是貨幣。並修正美國《1986國內所得稅法》(Internal Revenue Code of 1986),將虛擬貨幣交易視為免課稅之交易,並將總額小於600美金的虛擬貨幣買賣或交易之所得,排除於總收入(Gross Income)之外。   然而,目前美國證券管理委員會的態度仍未改變,並且於2019年4月3日發表〈數位資產「投資契約」分析之架構〉(Framework for “Investment Contract” Analysis of Digital Assets)。該分析架構說明:凡符合Howey Test之標準的「投資契約」即屬於「證券」,有《證券交易法》的適用。〈數位資產「投資契約」分析之架構〉甫發表,Warren Davidson與另外五位眾議員隨即重新提起2019年版的《代幣分類法》草案,是繼2018年9月、2018年12月第三度提起相關法案。楊安澤(Andrew Yang,美國首位角逐總統的華裔候選人)在2020年民主黨黨內總統初選政見中,亦援引《代幣分類法》草案,希望可以與連署《代幣分類法》草案的美國國會議員和懷俄明州(Wyoming)的立法者,共同擘畫有利於商業與人民的數位資產框架。

美國加州法院期透過數位方式管理證據生命週期,帶動司法效率提升

2024年9月23日起,美國加州洛杉磯高等法院於康普頓(Compton)與比佛利山莊(Beverly Hills)法院試行數位證據系統,旨於簡化小額訴訟程序,使訴訟當事人透過數位證據系統平臺進行數位證據開示,節省郵寄實體證據副本所花費的時間、人力、物力。洛杉磯高等法院為全美最大之一審法院,法院轄區人數逾1千萬人,其所推動之數位證據系統具參考價值。 以下說明數位證據系統的重點: 1.數位證據系統適用的案件範圍 適用於「小額訴訟當事人於聽證會前之證據開示程序」。 關於證據開示程序,訴訟當事人應至少於訴訟聽證會前10 日完成證據開示。證據開示程序的傳統做法為當事人將證據副本「郵寄」給對造,而數位證據系統允許訴訟兩造於聽證會前,以「電子方式」交換證據。 依加州法規定,小額訴訟指原告向被告(個人、企業或政府單位)請求給付的金額在1.25萬美元以下。 2.數位證據系統可上傳的數位證據類型 訴訟當事人輸入「案號、聽證會具體日期、個人資訊(電子信箱或手機號碼)及6位數字金鑰」以驗證身分、註冊數位證據系統帳號後,可於數位證據系統分批上傳多種文件格式,包含時戳證據(Time stamp evidence)、圖片、影片、文字檔(如Word、OpenOffice)、PDF檔案、HTML檔案、簡報檔案等。並勾選上傳資料之當事人身分(原告或被告),確認上傳證據。 當事人應於確認上傳之每筆證據的註解中,簡述(briefly)該證據資訊。 經當事人確認、成功上傳至數位證據系統的每筆證據,都會擁有其唯一的(unique)證據編號(Exhibit Number)。 該系統最終會製作出一份「涵蓋該案件所有數位證據資訊的證據清單(Exhibit List)」PDF檔案,包含:案號、數位證據編號、證據縮圖及證據之簡述資訊等資訊,以便當事人依證據清單,參考(refer to)證據編號進行證據開示。 3.數位證據系統的檔案權限控管之設定 (1)上傳、編輯、刪除權限 訴訟當事人可上傳數位證據。 於系統上傳、未確認送出數位證據的階段,當事人則可編輯、刪除數位證據。 (2)線上瀏覽權限 上傳證據之當事人、司法人員擁有線上瀏覽「所有經當事人確認上傳之數位證據」的權限。 於系統確認數位證據後,上傳證據之當事人可於系統「勾選欲共享之數位證據」後,輸入對造之姓名、電子信箱,與對造共享其指定之數位證據。 (3)下載權限 訴訟期間至結案後60日內,訴訟兩造均可於數位證據系統下載數位證據。 4.證據於數位證據系統的保存期限 於小額訴訟結案後60日內,系統將自動刪除該案上傳之數位證據。 美國加州推動數位證據平臺,使當事人於平臺驗證身分、上傳時戳等數位證據,由平臺產出涵蓋案號、證據編號及證據資訊之證據清單,透過系統之權限控管加強證據管理,以數位證據開示減輕傳統證據開示程序之負擔。關於司法資料交換,參照我國由司法院、法務部、臺灣高等檢察署、內政部警政署及法務部調查局於2024年4月正式啟用之「司法聯盟鏈共同驗證平台」,以「b-JADE證明標章」作為數位資料管理之標準,透過數位資料歷程管理與資料存證機制,鞏固證物保管機制。 上述之國內外趨勢之資料管理之作法可被資策會科法所發布之《重要數位資料治理暨管理制度規範(下稱EDGS)》所涵蓋,美國加州數位證據系統,透過管理證據生命週期之各階段,首先由當事人上傳、確認證物資訊及建置清單;其次設有不同程度的檔案使用權限;並訂有證據資料之保存期限,以便進行證據管理、加速司法訴訟之證據開示程序。而為方便資料管理者控管數位資料,EDGS同樣強調資料之生命週期管理,由「檔案標題或檔案的相關資訊,需要能對應特定的數位資料」,輔以建立「資料清單」有助於盤點多筆資料。並透過「控管資料權限」等保護措施,搭配「評估資料的維護期限」,以達到管理資料歷程的目標。建議企業將EDGS納入資料管理規劃,確保資料管控有方。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP