2025年12月初,澳洲數位轉型局(Digital Transformation Agency,下稱DTA)發布《政府負責任使用AI政策2.0》(Policy for the responsible use of AI in Government 2.0),旨在進一步強化公部門在AI的透明度、問責性與風險管理能力,於2025年12月15日生效,取代 2024年9月實施的過渡版本。
一、適用範圍
政策適用於所有非企業型聯邦實體(Non-corporate Commonwealth entities),即不具獨立法人地位、直接隸屬於政府的機關或單位。企業型聯邦實體則被鼓勵自願遵循。政策定位為「補充與強化既有法制」,非另訂獨立規範,因此在實務中須與公務員行為準則、資安規範及資料治理制度併行適用。
二、政策重點
在政策施行的12個月內,適用機關須完成以下要求,以確保落實AI治理架構:
(一)制度建置
1. AI 透明度聲明:機關須在政策生效後 6 個月內發布「AI 透明度聲明」,公開 AI 使用方法與現況。聲明中須說明機關風險管理流程、AI 事件通報機制及內外部申訴管道,確保使用過程透明、可追蹤。
2. 人員指定與培訓:
機關須指定制度問責人員(Accountable officials)以及AI使用案例承辦人(Accountable use case owners)。
所有員工皆須進行關於負責任使用AI的培訓,機關並依員工職務權責提供個別員工進階訓練。
3. 建立內部AI使用案例註冊清單(Internal AI use case register),以供後續追蹤
該清單至少包含:
(1)使用案例負責人(Accountable use case owners):記錄並持續更新範疇內 AI 使用案例的指定負責人。
(2)風險等級(Risk rating):AI使用案例的風險等級資訊。
(3)異動紀錄:當使用案例的風險評級或負責人變更時,須即時更新清單。
(4)自定義欄位:各機關可根據其需求,自行增加欄位。
(二)AI 使用案例範疇判斷
機關須在評估所有新案例,依以下特徵判斷AI應用是否屬於「範疇內(In-scope)」的應用:
1.對個人、社群、組織或環境造成重大損害。
2.實質影響行政處分或行政決策。
3.在無人工審查的情況下,大眾將直接與AI互動或受其影響。
4.涉及個人、敏感資料等資訊。
(三)進階風險評估
依AI影響評估工具(Impact Assessment Tool)針對公眾近用權;不公平歧視;加重刻板印象;損害人、組織或環境;隱私顧慮;資料敏感之安全顧慮;系統建置之安全顧慮;公眾信任等8類別,加以判斷範疇內AI應用,若有任一類別被評為「高風險」,即判定為「高風險」;若所有類別中最高的分數為「中風險」,則整體判定為中風險。
判定為中、高風險之AI應用,均需進行全面審核。中風險須列出所有中風險項目及其控管措施,主要為內部控管;而高風險則要求向DTA報告,且每年至少進行一次全面審核與風險再評估。
澳洲欲透過發布AI透明度聲明、更新AI使用案例註冊清單、強制執行AI應用之風險評估及人員培訓,確保公部門對AI的負責任使用與問責。而我國企業可參考資策會科法所創意智財中心發布之《重要數位資料治理暨管理制度規範(EDGS)》,落實AI資料管理與追蹤。
本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
日本獨立行政法人情報處理推進機構於2025年1月28日發布《成為可信賴夥伴的資料治理手冊(下稱《手冊》)》,旨在呼籲企業建立與實施「貫穿資料生命週期的資料治理機制」,藉此將資料價值最大化,並將資料風險最小化。 《手冊》指出,資料驅動著社會發展,資料治理的重要性亦隨之提升。資料治理係指企業或組織透過機制、規則與制度等多種層面的策略性手段管理其重要資料資產,並透過制定相應的政策與規則,確保資料的品質與安全性。同時,考量資料具備易於複製、竄改且流通難以控制的特性,建立完善的資料治理機制亦有助於在共享資料的過程中維持其品質及安全性。推動資料治理的基礎,則仰賴適當且有效的資料管理機制,亦即確保在蒐集、處理、儲存與使用等資料生命週期各階段皆能落實資料管理機制。然而,資料管理本身要能發揮效益,仍須依賴組織具備足夠的資料成熟度,即具備正確處理與應用資料的整體能力,方能系統性的落實管理與治理工作。 根據《手冊》內容,透過資料治理,企業或組織將能確保資料品質、透明度及安全性,並基於可信任的資料進行決策,進而有效提升決策精準度,實現風險管理與法規遵循,進一步強化自身在資料經濟中的「價值」、「信任」與「公正性」。 我國企業如欲逐步建立並落實貫穿資料生命週期的資料治理機制,可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,作為制度設計與實務推動之參考,以強化資料治理能力。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國總統簽署《強化美國訊號情報活動命令》,具體落實美歐跨大西洋資料保護框架美國總統拜登於2022年10月簽署了《強化美國訊號情報活動行政命令》(Executive Order On Enhancing Safeguards For United States Signals Intelligence Activities),指示美國將採取哪些步驟以落實歐盟與美國間資料隱私架構下的承諾。其目的在於解決歐盟法院(Court of Justice of the EU)在2020年7月的Schrems II判決中宣布隱私盾協議(EU-U.S. Privacy Shield framework)無效時所提出的疑慮與問題。 新的行政命令為美國的情報監視活動規定了某些「隱私和公民自由保護措施」,並且為非美國人制定了一種新的權利救濟管道,該行政命令主要規定了以下幾點: 1.規定美國的訊號情報活動應為必要的,並且符合有效的情報優先事項。 該行政命令規定,美國的訊號情報只有在「促進有效情報優先事項所必需」,並且「只有在與授權事項相襯的範圍與方式下」才能進行。該命令規定,基於了解或評估對美國、其盟友或夥伴的國家安全構成當前或潛在威脅的國外組織的能力、意圖或活動;防止由外國政府、外國組織或外國個人實施或代表其實施的恐怖主義、劫持人質;以及了解或評估影響全球安全的跨國威脅等目的,可以對某些合法目標進行情報偵察活動。且不得對與新聞自由、異議、思想或政治觀點的自由表達造成限制或使其立於不利地位,也不得蒐集商業訊息;這些訊息的蒐集僅限用於美國、其盟友或夥伴的國家安全。 2.規定訊號情報活動蒐集到的個人資料之處理方式。 針對通過訊號情報活動所蒐集的個人資料,美國情報系統在處理資料的每個環節必須建立制度和相關程序,以盡量減少個人資料的傳輸和保存環節。且只有在適用法規允許蒐集、保留美國人特定類型的資訊之情況下,才能夠保留非美國人的該類型訊息,不得因被蒐集資料的對象並非美國人而有所差異。並要求資訊處理的單位人員保持適當的培訓,以確保相關人員能夠理解規範的要求。 3.規定非美國人的權利救濟程序,以審查美國情報界的訊號情報活動。 在此行政命令頒布後60天內,國家情報總監(DNI)在與美國司法部和情報界各部門協商後,針對非美國人「藉由相應國家機構所移轉符合資格之投訴」建立處理程序。而美國的司法部長可以與國務卿、商務部長和DNI進行協商,將一個國家或是經濟區域、組織指定為符合資格的國家或是國際群體,其人民可以進行權利救濟。DNI的公民自由保護辦公室(Civil Liberties Protection Officer, CLPO)將對這些非美國人的申訴進行審查,並於必要時進行適當的補救措施,包含刪除未經合法授權獲得的資料,或是將合法蒐集資料的訪問權限限制於經過適當培訓的人員。 4.建立資料保護審查法院,以審查CLPO對於合格申訴的判定結果。 新成立的資料保護審查法院應任命針對資料隱私和國家安全法領域具備適當經驗的法律從業人員來擔任法官。投訴人可於CLPO做出決定後,向該法院申請審查CLPO的決定。
FDA發佈人工智慧/機器學習行動計畫美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。 2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。 根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。
基因專利新發展隨著基因工程的逐漸成熟,關於現代生物技術可否取得專利,引起激烈的公開辯論。為了澄清這些問題,歐盟和美國曾採取重要的立法和行政措施,如歐洲議會和理事會關於生物技術發明的98 / 44 / EC指令 ,及美國專利商標局2001年1月5日所修改的確認基因有關發明實用性指南(Guidelines For Determining Utility Of Gene-Related Inventions of 5 January 2001)。 然而,美國最高法院於2013年《Association for Molecular Pathology v. Myriad Genetics, Inc.》一案中認為,自然發生的DNA片段是自然界的產物,不因為其經分離而具有可專利適格性,但認為cDNA(complementary DNA,簡稱cDNA)具有可專利適格性,因為其並非自然發生。該判決強調Myriad Genetics, Inc.並未創造或改變任何BRCA1和BRCA2基因編碼的遺傳信息,即法院承Myriad Genetics, Inc.發現了一項重要且有用的基因,但該等基因從其週邊遺傳物質分離並非一種發明行為。不過,法院也認為“與經分離的DNA片段屬於天然發生者不同,cDNA則具有可專利性。”因此,“cDNA非自然的產物,且根據美國專利法第101條具有可專利性。” 其次,美國於2012年3月《Mayo Collaborative Services v. Prometheus Laboratories》案認為,檢測方法僅為揭露一項自然法則,即人體代謝特定藥物後、特定代謝產物在血液中濃度與投與藥物劑量發揮藥效或產生副作用的可能性間的關聯性。即使需要人類行為(投以藥物)來促使該關聯性在特定人體中展現,但該關聯性本身是獨立於任何人類行為之外而存在,是藥物被人體代謝的結果,因此,全部應為自然過程。而不具有可專利性。