日本發布《資料品質管理指引》,強調歷程存證與溯源,建構可信任AI透明度

2025年12月,日本人工智慧安全研究所(AI Safety Institute,下稱AISI)與日本獨立行政法人情報處理推進機構(Information-technology Promotion Agency Japan,下稱IPA)共同發布《資料品質管理指引》(Data Quality Management Guidebook)。此指引旨於協助組織落實資料品質管理,以最大化資料與AI的價值。指引指出AI加劇了「垃圾進,垃圾出(Garbage in, Garbage out)」的難題,資料品質將直接影響AI的產出。因此,為確保AI服務的準確性、可靠性與安全性,《資料品質管理指引》將AI所涉及的資料,以資料生命週期分為8個階段,並特別強調透過資料溯源,方能建立透明且可檢核的資料軌跡。

1.資料規劃階段:組織高層應界定資料蒐集與利用之目的,並具體說明組織之AI資料生命週期之各階段管理機制。

2.資料獲取階段:此步驟涉及生成、蒐集及從外部系統或實體取得資料,應優先從可靠的來源獲取AI模型的訓練資料,並明確記錄後設資料(Metadata)。後設資料指紀錄原始資料及資料歷程之相關資訊,包含資料的創建、轉檔(transformation)、傳輸及使用情況。因此,需要記錄資料的創建者、修改者或使用者,以及前述操作情況發生的時間點與操作方式。透過強化來源透明度,確保訓練資料進入AI系統時,即具備可驗證的信任基礎。

3.資料準備階段:重點在於AI標註(Labeling)品質管理,標註若不一致,將影響AI模型的準確性。此階段需執行資料清理,即刪除重複的資料、修正錯誤的資料內容,並持續補充後設資料。此外,可添加浮水印(Watermarking)以確保資料真實性與保護智慧財產權。

4.資料處理階段(Data Processing):建立即時監控及異常通報機制,以解決先前階段未發現的資料不一致、錯漏等資料品質問題。

5.AI系統建置與運作階段:導入RAG(檢索增強生成)技術,檢索更多具參考性的資料來源,以提升AI系統之可靠性,並應從AI的訓練資料中排除可能涉及個人資料或機密資訊外洩的內容。

6. AI產出之評估階段(Evaluation of Output):為確保產出內容準確,建議使用政府公開資料等具權威性資料來源(Authoritative Source of Truth, ASOT)作為評估資料集,搭配時間戳記用以查核參考資料的時效性(Currentness),避免AI採用過時的資料。

7.AI產出結果之交付階段(Deliver the Result):向使用者提供機器可讀的格式與後設資料,以便使用者透過後設資料檢查AI產出結果之來源依據,增進透明度與使用者信任。

8.停止使用階段(Decommissioning):當資料過時,應明確標示停止使用,若採取刪除,應留存刪除紀錄,確保留存完整的資料生命週期紀錄。

日本《資料品質管理指引》強調,完整的資料生命週期管理、強化溯源為AI安全與創新的基礎,有助組織確認內容準確性、決策歷程透明,方能最大化AI所帶來的價值。而我國企業可參考資策會科法所創意智財中心發布之《重要數位資料治理暨管理制度規範(EDGS)》,同樣強調從源頭開始保護資料,歷程存證與溯源為關鍵,有助於組織把控資料品質、放大AI價值。

本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。

本文同步刊登於TIPS網站(https://www.tips.org.tw

相關連結
你可能會想參加
※ 日本發布《資料品質管理指引》,強調歷程存證與溯源,建構可信任AI透明度, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9449&no=86&tp=1 (最後瀏覽日:2026/02/09)
引註此篇文章
你可能還會想看
美國藥品學會建議調整HIPAA隱私權規範以兼顧醫療研究及隱私保護

  隸屬美國科學院(National Academy of Sciences)之藥品學會(Institute of Medicine)於2009年2月4日發表一份研究報告,指出美國醫療保險可攜及責任法的隱私權規範(HIPAA, Privacy Rule),對於醫療研究中有關個人健康資訊之取得及利用的規定未盡周全,不僅可能成為進行醫療研究時的障礙,亦未能完善保障個人健康資訊。   在目前的規範架構下,是否允許資訊主體概括授權其資料供後續研究利用,並不明確;另外,在以取得資料主體之授權為原則,例外不需取得授權但必須由審查委員會判斷其妥適性的情況下,亦未有足夠明確的標準可資審查委員會判斷依循,此些問題不僅使得醫療研究中之資料取得及運用,產生若干疑慮,亦突顯個人相關健康資料保護之不足。   該報告建議國會應立法授權主管機關制訂一套新的準則,將個人隱私、資料安全及資訊運用透明化等標準,一體適用於所有醫療相關研究的資料取得及利用上;在未來的新準則中,應促進去名化醫療資訊之運用,同時對於未取得資料主體授權的資料逆向識別(re-identification)行為,應增設罰則;此外,審查委員會在判斷得否不經資料主體授權而以其資料進行研究之妥適性時,亦應納入道德考量因素,倘若研究係由聯邦層級的組織所主導,則研究團隊應先證明其已採取充分保護資料隱私及安全的措施,藉以平衡隱私權保護與醫療研究的拉鋸。

香港電訊管理局放寬對互連費的管制

  香港電訊管理局(OFTA)於2009年04月27日廢止了廿五年前制定的「流動網絡(即我國的行動電話/信網路)付費」規管指引。此管制規定即是明定了行動網路業者(MNO)固網業者(FNO)間的互連費收取(FMIC)模式。今後互連費的結算將以商業協議取代事前的管制性介入。   以往固網與行動網路業者互連費計算乃基於「流動網絡付費」為之,亦即行動網路業者須繳付流動網絡與固網之間所有的通話互連費用(MPNP),顯有不對稱之狀況,不利於電訊服務在匯流大環境下的公平競爭和發展。職是,電訊管理局於2007年決議將廢除該規定並設定兩年的過渡期間,讓相關業者進行調整;多數業者也在過渡期間內達成協議或共識。業者間均同意原則上採取「毋須拆帳」(Bill and Keep, BAK)的結算模式,因此也不會產生將費用轉嫁到其他電訊服務商或是終端消費者的問題。此顯示去管制化並交由市場機制決定互連費用之作法實屬可行。   以市場取代管制,短期內雖會有不確定因素可能導致爭議,惟電訊管理局也強調業者間的協議(含協商不成)不得危及公眾利益與一定的服務品質,必要時將依法介入業者間的協商程序。該局也將持續關注互連費問題之發展。

美國有限合夥發展於我國之借鏡

歐盟「Fit for 55」溫室氣體減量政策

  歐盟執委會於2021年7月14日公布一系列有關再生能源、能源效率、交通運輸、財稅政策、碳交易機制等議題之立修法提案。提案目的是希望整體制度能更加有助於歐盟氣候法(European Climate Law)中所設定減碳目標達成,於2030年減少相當於1990年55%的排碳量,故被稱為「Fit for 55」。   執委會為達成減碳目標,具體提案內容如下: (1)能源效率:修正《能源效率指令》(Energy Efficiency Directive),設定2030年能源消耗減少36~39%目標,並要求每年更新公部門建物至少3%,以提升能源效率; (2)再生能源:修正《再生能源指令》(Renewable Energy Directive),目標增加2030年的再生能源使用比例達現在的40%; (3)交通運輸:於陸路運輸,透過修正《小客車與輕型商用車新車二氧化碳排放規則》(Regulation setting CO2 emission standards for cars and vans),針對出廠新車制定2030年汽車55%、廂型商用車50%、2035年所有新車100%之減碳目標,並配合《替代燃料基礎設施規則》(Alternative Fuels Infrastructure Regulation)之修正,明訂高速公路每60公里設置充電站、150公里設置加氫站,以提供低碳運具之需求;於空運,歐盟航空永續燃料倡議(ReFuelEU Aviation Initiative),要求航空能源供應商增加永續燃料比例;針對海運,則透過歐盟海事燃料倡議(FuelEU Maritime Initiative),針對結合永續燃料與零排放科技的結果進行模擬,並設定最高排碳量。 (4)財稅政策:制定《碳邊境調整機制》(Carbon Border Adjustment Mechanism),針對被選定的目標產品(包含:水泥、電力、肥料、鋼鐵、鋁)訂定碳價格,於其自境外輸入時課徵稅費,以解決碳洩露問題;修正《能源稅指令》(Energy Taxation Directive),調整能源相關產品稅收計算方式、刪除不合時宜的規定,透過稅收調整能源使用之誘因,以貼近減碳需求。 (5)碳交易機制:修正《溫室氣體排放交易指令》(EU Emission Trading System Directive)擴大碳交易機制適用對象,納入海運、燃料供應中心,同時要求會員國應將碳交易所得,全數用於氣候能源相關計畫,以補足當前財務上的缺口。   總結而言,歐盟「Fit for 55」政策為使整體制度更符合2030年55%的減碳目標,透過個別部門減碳目標之設定、替代燃料之推動、財政誘因之調整等三種手段,希望多方面對減碳做出貢獻,以加速減碳的進程。

TOP