美國高端家居家飾用品零售商Williams-Sonoma於美國加州北區聯邦地方法院指控電商巨頭Amazon企圖誤導消費者,使消費者認為Amazon是Williams-Sonoma授權的經銷商。 2018年12月14日Williams-Sonoma向法院提起了智財侵權等訴,主張Amazon犯有下列行為,並請求損害賠償及禁制令: 侵害了Williams-Sonoma旗下West Elm品牌的Orb椅子設計專利,專利號為D815,452。 在Amazon網站上及行銷廣告中使用Williams-Sonoma的商標而有商標侵害及仿冒之行為。 在Amazon網站上及行銷廣告中使用Williams-Sonoma的商標而有商標淡化之侵害行為。 不公平競爭行為。 Williams-Sonoma指出就商標部分,Amazon未經授權,在其網站設立一Williams-Sonoma銷售網頁,並在廣告及該網頁中使用未經授權的Williams-Sonoma商標,且未標示清楚網頁中的商品並非直接由Williams-Sonoma提供;甚至於Amazon的搜尋引擎廣告及電子郵件廣告中誤導消費者,使消費者認為可以在Amazon網站上買到Williams-Sonoma授權的商品。 Amazon於今(2019)年2月提出動議主張該案與商標相關之部分應予駁回,辯稱其僅是提供一個平台,使在其他地方購買的Williams-Sonoma產品可以轉售給消費者,適用第一次銷售原則。但該地院法官表示:「就整體而言Amazon不僅是轉售Williams-Sonoma的產品,而是塑造錯誤的印象讓人誤以為在Amazon網站的這些銷售是經過授權,使一個合理謹慎的消費者(reasonably prudent consumer)會產生誤認混淆。」,因此裁定駁回被告Amazon提出的動議,本案將會進入法院審判。 Williams-Sonoma提出的訴訟案其實也是Amazon發展自有品牌衍生的抄襲問題以及與其他大型品牌商緊張關係的展現。Amazon扮演著既是合作夥伴也是競爭者的角色,使得一些大型品牌商陷入困境,若不在Amazon網站銷售,產品很有可能會銷售不佳,但若在Amazon網站銷售,則Amazon會蒐集銷售產品的資料並且製造類似但較便宜的自有品牌產品銷售。Amazon此種飽受爭議的營運模式所牽扯的智財爭議仍有待後續追蹤 。 圖片來源:COURT DOCUMENTS 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
數位資產正式納入美國懷俄明州州法,並將虛擬貨幣視為金錢美國懷俄明州(Wyoming)於2019年1月18日提出S.F. 0125法案,經參眾議院三讀及州長簽署通過後,將在同年7月1日生效,代表數位資產(digital assets)正式納入懷俄明州州法第34編第29章。該法定義數位資產為表彰經濟性、所有權或近用權,並儲存於可供電腦讀取之格式(computer readable format)中,又區分為數位消費資產(digital consumer assets)、數位證券(digital securities)及虛擬貨幣(virtual currency)等三類。 數位消費資產,是指為了消費、個人或家用目的使用或購買的數位資產,包含:(1)除法律另有規定外,開放區塊鏈代幣(open blockchain tokens)視為個人無形資產(intangible personal property),(2)非屬本章數位證券和虛擬貨幣範圍內之數位資產;數位證券則是指符合懷俄明州州法第17編第4章有價證券定義的數位資產,但排除數位消費資產及虛擬貨幣;又,虛擬貨幣是指使用數位資產作為交易媒介(medium of exchange)、記帳單位(unit of account)或具儲存價值(store of value),且尚未被美國政府視為法定貨幣(legal tender)。 本次修法規定數位資產均為個人無形資產,另將數位消費資產視為該州州法下之一般無形資產,數位證券視為該州州法下之有價證券及投資性財產,虛擬貨幣則視為金錢,有論者表示本次修法有助於促進數位資產流通,並鼓勵各州跟進修法。然此舉是否有助於該州推行數位資產產業,尚待持續觀測,始能得知其對業界與政府監管所造成之影響。
基因資訊醫療運用與業務過失 IBM提出「人工智慧日常倫理」手冊作為研發人員指引隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability) 由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment) 人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability) 人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。 該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。