揭露智財資訊,展現永續發展之動能 資訊工業策進會科技法律研究所 2024年04月02日 隨著ESG議題持續醞釀,永續資訊揭露已成為國際間政策規劃所討論的重點,各國亦逐漸重視這股永續浪潮。 另一方面,企業價值的來源已轉變為智慧財產和無形資產,成為企業競爭力的來源,對於實現永續轉型(Sustainable transformation,SX)或推動永續發展具有重要意義,因此如何揭露企業對於智慧財產權與無形資產的投資於永續報告書中更顯重要。 壹、事件摘要 日本針對智慧財產與無形資產對於永續發展的政策推動始於《公司治理守則》的修訂。在制定出《智財與無形資產管理指引》後,日本智慧財產權戰略本部強調企業對於智慧財產與無形資產的投資與利用,以加速企業價值提升和獲取投資資金的良性循環,並強化公司、投資者和金融機構之間的「合作」。近期,日本智慧財產權戰略本部更開始評估有關國際永續準則委員會(International Sustainability Standards Board,以下簡稱ISSB)的資訊揭露要求[1]。 貳、重點說明 日本《公司治理守則》於2021年6月的修訂要求上市公司揭露具體、易於理解的智慧財產投資資訊。為回應前述修訂,日本智慧財產權戰略本部於2022年1月制定《智財與無形資產管理指引1.0》,指出投資者將智財與無形資產資訊視為評估公司未來價值的重要標準,因此鼓勵公司建構與實施符合ESG要求的智財和無形資產的投資與利用策略,並透過揭露明確其地位,以產生長期正向的價值評價。有鑑於揭露未能達到預期的效果,於2023年3月修訂《智財與無形資產管理指引2.0》,促使與智財和無形資產相關的公司舉措和揭露能體現其價值,以利公司與投資者的溝通,並展現出公司之未來價值。 考量到國際永續準則委員會(ISSB)於2023年6月公布了兩大國際永續資訊揭露框架準則,象徵全球永續財務與非財務資訊的揭露已逐步整合為全球通用的標準,日本智慧財產權戰略本部於2023年8月召開會議,確認智財資訊的揭露符合ISSB之要求,因而提案ISSB評估是否將智財、無形資產、人力資本等都納入永續資訊揭露應揭露之範疇。 為持續推動企業積極實踐永續發展,我國金融監督管理委員會亦於2022年3月發布「上市櫃公司永續發展路徑圖」,以四大主軸、五項重點協助上市櫃公司邁向永續發展,提升國際競爭力。其中「精進永續資訊揭露」、「推動ESG評鑑及數位化」更納入階段性目標,顯示出資訊揭露、永續報告書、ESG評鑑之推動三者已成為我國政策推動的重要評估事項[2]。 參、事件評析 在永續議題的持續發酵下,如何透過政策確保企業邁向永續發展乃一大議題,又由於對智財與無形資產之投資與利用乃企業競爭力的根源,更顯企業揭露此類資訊之重要性,不可輕易忽視。以往,我國企業會透過公司治理評鑑的2.27指標[3],彰顯要求上市上櫃公司公開揭露智財管理資訊。近年來,伴隨著永續發展等相關政策之推動,企業應進一步評估如何在永續報告書中呈現與智財相關的資訊,以順應未來評鑑制度之轉換,並呈現智財是企業創新的關鍵。 在智慧局公布的2023年專利百大排名中,前十大[4]無一例外地依全球報告倡議組織(Global Reporting Initiative,以下簡稱GRI)所推出的國際標準永續報告書撰寫框架,且所有廠商都有在「GRI 3重大主題」中揭示與智財相關之資訊,凸顯其創新研發連結永續發展之動能。換言之,透過「GRI 3重大主題」將智財資訊揭露予更多利害關係人知悉,可謂我國標竿廠商展現其核心企業價值的主要管道。企業可參考上述企業於永續報告書揭露智財資訊模式,將智財議題形塑成一項重大主題,並揭露於特定章節以回應利害關係人之關注。首先,鑑別出各類利害關係人。接著,辨別相關衝擊因子,以篩選永續議題。然後,評估永續議題對企業之實際或潛在的正、負面衝擊。最後,確立企業所揭露之重大主題,並回應利害關係人所重視之資訊。 在永續發展、資訊揭露對於企業的衝擊下,財團法人資訊工業策進會科技法律研究所創智中心(以下簡稱創智中心)2023年針對我國上市上櫃企業進行企業智財現況調查,調查發現超過一半企業願意公開揭露智財資訊,而這些企業認為,公開揭露智財資訊有助於外界客觀評估公司之真實價值與競爭力,亦能協助公司落實ESG永續經營。為協助企業將智財資訊分別連結至永續發展之環境保護(E)、社會責任(S)以及公司治理(G)面向,創智中心將持續觀測各國法令動態以及國內外智財揭露案例,推動企業將智財資訊完整呈現於永續報告書。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]〈知財投資・活用戦略の有効な開示及びガバナンスに関する検討会第22回〉,首相官邸,https://www.kantei.go.jp/jp/singi/titeki2/tyousakai/tousi_kentokai〈最後瀏覽日:2024/4/2〉。 [2]金管會發布「上市櫃公司永續發展行動方案(2023年)」〉,金融監督管理委員會,https://www.fsc.gov.tw/ch/home.jsp?id=96&parentpath=0%2C2&mcustomize=news_view.jsp&dataserno=202303280001&dtable=News〈最後瀏覽日:2024/4/2〉。 [3]〈公司治理評鑑〉,公司治理中心,https://cgc.twse.com.tw/evaluationCorp/listCh〈最後瀏覽日:2024/4/2〉。評鑑指標2.27:公司是否制訂與營運目標連結之智慧財產管理計畫,並於公司網站或年報揭露執行情形,且至少一年一次向董事會報告? [4]〈智慧局公布112年專利百大〉,經濟部智慧財產局,https://www.tipo.gov.tw/tw/cp-87-932910-26c76-1.html〈最後瀏覽日:2024/4/2〉。在專利申請方面,前十大分別是台積電、聯發科、友達、宏碁、南亞科、英業達、群創、工研院、瑞昱、台達電,其中除了工研院外,剩餘九家皆為我國專利申請之標竿廠商。
IE壟斷瀏覽器市場遭歐盟裁罰,股東狀告微軟公司針對2013年微軟因Internet Explorer瀏覽器壟斷問題遭歐盟裁罰,微軟股東Kim Barovic於2014年4月11日向美國華盛頓西區聯邦地區法院(U.S. District Court, Western District of Washington)提出告訴,控告包括微軟公司創辦人Bill Gates與前任CEO Steve Ballmer等高層在整起事件中決策失誤、處理不當,致使公司承受鉅額罰款,蒙受重大損失,且董事會亦未善盡職責,徹查事件發生之原因。 2013年3月,身為歐盟反壟斷監管機構的歐盟執委會(European Commission),以微軟公司自2011年5月至2012年7月間發布的Windows 7 Service Pack系統更新,未提供超過1500萬用戶除了預設IE瀏覽器以外其他上網程式的選擇,顯然未履行該公司於2009年對歐盟做出的具有法律拘束力的承諾(即確保歐洲地區的消費者有選擇網路瀏覽器的自由)為由,對該公司之義務違反處以7億3100萬美元的天價裁罰,這也是歐盟執委會首次對違反此項義務的公司開罰。 本起訴訟是自2013年事件發生以來,首次有股東向微軟公司提告。原告Kim Barovic在訴訟中要求徹查決策錯誤的發生原因並懲處管理階層的相關失職人員。她說,董事會表示:「經調查,無證據顯示有任何現任或前任主管或經理人違反受託人義務。」微軟則於11日發布聲明:「Barovic請董事會調查其要求,還對董事會與公司管理階層提告。董事會已經完整地考量過其要求,但找不到官司成立的根據。」
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
法國參議院關於資料在地化(Data Localization)之修法提案為實現歐洲公民資料一致保護水準之期待,全面革新歐盟各會員國資料保護規範的一般資料保護規則(General Data Protection Regulation, GDPR),已於2016年4月14日由歐洲議會正式通過,且將在2018年5月25日生效,該規則異於資料保護指令(Data Protection Directive,95/46/EC)之處,在於規則無待各會員內國法化,得以直接適用,然而生效前的過渡期間,歐盟各國為因應新修正規則預作準備;近期,法國政府在「數位共和國」(République Numérique)法案中,欲修改現行關於資料保護之法律,如法國資料保護法(Loi Informatique et Libertes Act N°78-17 Of 6 January 1978),以達歐盟資料保護水準。 法國國民議會(Assemblée nationale)於2016年1月一讀通過,參議院(Sénat)隨後在5月提出修正案中第26 條之一(Article 26 bis A),要求個人資料應儲存於歐盟或法國境內的資料中心,同時為符合與歐盟的國際承諾會員國,並禁止個人資料傳輸至非歐盟的第三國,而參議院修法理由是為了確保法國規範符合歐盟資料保護水準,並依據先前歐盟法院關於安全港無效之判決的結果為修訂。 然而,資料在地化條款目前仍不明確,但此規定恐對資料傳輸設下更多限制;雖然在GDPR第23條規範關於各國決定限制權利和義務的範圍,資料傳輸至第三國並不在此列,故為加速修法程序,聯合調解委員會(Commission mixte paritaire)將於近期內審查調整,國民議會和參議院的代表仍能針對此條款提出意見以達成最終共識,後續修法值得關注。