運作技術成熟度(Technology Readiness Level)進行技術評估
資策會科技法律研究所
法律研究員 羅育如
104年10月22日
壹、前言
為提升我國科技競爭力,於1999年制定科學技術基本法(以下簡稱科技基本法),透過科技基本法的規定,使原本歸屬國有財產之研發成果,得以下放歸屬執行單位所有,使大學對研發成果能有更完善應用之權利。
科技基本法實施之後,各研究單位開始學習國外經驗,積極進行產學合作,將內部之研發成果技術移轉與外部產業。但是,科技基本法實行已15年的今日,各界逐漸發現,政府經費之投入與研發成果產出之經濟效益有相當大的差距。例如科技部102年專題研究計畫補助經費為215億新台幣,但僅創造3.5億新台幣之衍生成果技術移轉權利金[1]。政府經費投入與產出不符預期的議題,牽涉多元層面問題,但是從新設立政府計畫案之目標與KPI,可以發現政府新創設之補助計畫開始以協助技術商業化作為主要目的,例如萌芽計畫、產學計畫等。
技術商業化操作模式會依據技術成熟度不同而有所差異,技術成熟度高的項目,廠商承接後所需要投入的研發成果可能較低,直接協助廠商改善生產流程或是成為產品商品化的機率較高;反之,廠商則需要投入較多的技術研發費用,需要花費較多的人力與資源,技術才有機會商品化。
由此可知,在技術商業化計畫推廣時,技術項目的技術成熟度是一個重要的評估關鍵。本文針對技術成熟度的評估指標詳細說明,以提供執行技術商業化計畫時,評估技術項目之參考。以下會分別說明何謂技術成熟度以及技術成熟度如何運用,最後會有結論與建議。
貳、技術成熟度說明
技術成熟度或稱為技術準備度(Technology Readiness Level;簡稱TRL)是美國太空總署(NASA)使用多年的技術評估方法,後來為美國國防部所用,再廣為國際各政府機構、學研單位、企業機構使用。
TRL是一個系統化的量尺/衡量指標,可以讓不同型態的技術有一致性的衡量標準,描述技術從萌芽狀態到成功應用於某項產品的完整流程[2]。而TRL涵蓋的技術研發流程則包括四個部分:(1)概念發展:新技術或是新概念的基礎研究,涵蓋TRL1~3;(2)原型驗證:特定技術針對一項或是多項潛在應用的技術開發,涵蓋TRL4與5;(3)系統開發:在某一應用尚未成為一整套系統之前的技術開發以及技術驗證,然後進行系統開發,涵蓋TRL6;(4)系統上市並運作[3],涵蓋TRL7~9。以下分別說明TRL每個衡量尺度的定義[4]。
TRL 1 基礎科學研究成果轉譯為應用研究。
TRL 2 為某項特殊技術、某項材料的特性等,找出潛在創新應用;此階段仍然是猜測或推論,並無實驗證據支持。
TRL 3 在適當的應用情境或載具下,實驗分析以驗證該技術或材料相關物理、化學、生物等特性,並證明潛在創新應用的可行性(proof-of-concept)。
TRL 4 接續可行性研究之後,該技術元素應整合成具體元件,並以合適的驗證程序證明能達成原先設定的創新應用目標。
TRL 5 關鍵技術元件與其他支援元件整合為完整的系統/系系統/模組,在模擬或接近真實的場域驗證。需大幅提高技術元件驗證的可信度。
TRL 6 代表性的模型/雛形系統在真實的場域測試。展示可信度的主要階段。
TRL 7 實際系統的雛形品在真實的場域測試。驅使執行TRL7的目的已超越了技術研發,而是為了確認系統工程及研發管理的自信。
TRL 8 實際系統在真實的場域測試,結果符合設定之要求。代表所有技術皆已整合在此實際系統。
TRL 9 實際系統在真實場域達成目標。
參、技術成熟度應用
技術成熟度可以單純拿來衡量技術開發階段、可用來衡量技術開發風險、也可作為研發機構角色以及補助計畫定位的參考,以下說明。
一.技術成熟度用來衡量技術開發階段
這是技術成熟度最單純的應用方法,但因為每種技術領域都可其特殊的技術開發脈絡,所以可以根據NASA原有的技術成熟度,修改成貼近該技術領域需求的技術成熟度指標。目前有看過軟硬體TRL指標、綠能&能源TRL指標、ICT TRL指標、生醫(新藥、生物製劑、醫材)TRL指標等[5]。
二、技術成熟度用來管理技術研發風險
研究開發需投入大量的人力、物力,而研究成果的不確定性又很高,所以需要有良好的技術研發管理。技術成熟度對技術研發管理而言,是風險的概念,一般而言,TRL階段與技術風險是反向關係,也就是說TRL階段越高,技術風險越低[6]。
需要考慮的面向包括[7] ,(1)現在技術成熟度在哪一階段?以及我們投入研發後,希望達到的技術成熟度目標為何?(2)從現在的技術成熟度到專案需要的技術成熟度,要精進這項技術到底有多難?(3)這項特定技術如果開發成功,對於全面技術目標而言的重要性如何?
三、機構角色以及補助計畫定位
TRL指標可用來明確區分研發機構角色定位,例如工研院內部運用TRL指標做為技術判斷量化評估指標,並且工研院需將技術成熟度提升到TRL6或7,以克服技術面的問題,進行小型試量產,才能跨越死亡之谷讓業界接手商業化[8]。
TRL指標也可以用來區分補助計畫的標的範圍,例如美國國防部傾向投資TRL 4階段技術,美國國防部培養TRL4以及4以下的技術到TRL6階段,使得這些技術能更順利的進入技術市場,其原因在於TRL程度越低,成功商品化的不確定性以及風險就越高,而TRL4階段技術項目,是美國國防部可以承受的風險程度[9]。
肆、結論
TRL指標現在已被廣泛的運用在技術評估工作上,透過量化的指標,協助研發人員或是技術管理人員方便掌握每個技術開發案的現況,例如現在技術在TRL哪個階段,技術開發結束後,TRL預計會到達哪個階段。確定目標之後,就可以進一步評估這個計畫開發案的風險並評估組織需投入的資源。
TRL是一個簡易的技術評估指標,但如果要以此做出全面性的技術策略,似乎就還是有所不足,因此,可以再搭配其他技術評估變項,發展為全面性的技術風險管理評估指標,可能可以搭配技術開發困難度指標,用以評估TRL往上提升一級的困難度程度[10],也可以搭配技術需求價值指標[11],這項技術順利成功的話,對整個系統開發而言的價值高低,價值非常高的話,就值得花更多資源與人力去投資。
由此可知,應該可以積極運用TRL指標,用來評估政府技術補助計畫,協助大學技轉辦公室管理各研發團隊之技術開發進程,也可提供技術移轉潛在廠商清楚設定技術規格,減低技術供給方與技術需求方之間的認知差異,進而提升技術移轉成功率,也就可以拉近政府經費投入與研發成果產出的差距。
[1] 行政院國家科學委員會,行政院國家科學委員會102年年報,頁24、98(2013),http://www.most.gov.tw/yearbook/102/bookfile/ch/index.html#98/z,最後瀏覽日2015/07/21。
[2] John C. Mankins, NASA, Technology Readiness Levels: A White Paper (1995).
[3] id.
[4] US DEPARTMENT OF DEFENSE (DoD), Technology Readiness Assessment (TRA) Guidance (2011), http://www.acq.osd.mil/chieftechnologist/publications/docs/TRA2011.pdf (last visited July 22, 2015).
[5] Lewis Chen,<Technology Readiness Level>,工研院網站,http://www.sti.or.th/th/images/stories/files/(3)ITRI_TRL.pdf (最後瀏覽日:2015/07/22)。
[6] Ricardo Valerdi & Ron J. Kohl, An Approach to Technology Risk Management (2004), http://web.mit.edu/rvalerdi/www/TRL%20paper%20ESD%20Valerdi%20Kohl.pdf (last visited July 22, 2015).
[7] John C. Mankins, Technology Readiness and Risk Assessments: A New Approach, ACTA ASTRONAUTICA, 65, 1213, 1208-1215 (2009).
[8] 邱家瑜、蔡誠中、陳禹傑、高皓禎、洪翊恩,<工研院董事長蔡清彥 以新創事業連結全球市場 開創屬於年輕人的大時代>,台灣玉山科技協會,http://www.mjtaiwan.org.tw/pages/?Ipg=1007&showPg=1325 (最後瀏覽日:2015/07/22)。
[9] Ricardo Valerdi & Ron J. Kohl, Massachusetts Institute of Technology, An Approach to Technology Risk Management, http://web.mit.edu/rvalerdi/www/TRL%20paper%20ESD%20Valerdi%20Kohl.pdf (last visited July 21, 2015).
[10] 同註7。
[11] 同註7。
Nike成立於1971年,以運動用品起家,曾於2013年登上美國雜誌《Fast Company》「最具創新力的公司」排名位列第一。Nike在2012年推出Flyknit系列產品,主打一體成型的針織鞋面,Nike表示Flyknit技術是經過多年的研究、設計與開發,除以接面不明顯的方式來形成鞋面,其所使用的針織材料還可在鞋面的不同區域產生不同的紋理,並提供運動員所需要的輕盈、支撐、透氣、靈活等特性。此外,Nike也申請了有關Flyknit技術的發明專利以及利用Flyknit技術生產鞋面的設計專利。Flyknit不但在運動鞋業掀起新的流行趨勢,也開啟了新的訴訟戰場。 2012年,adidas晚Nike幾個月也發表了編織鞋款Primeknit,Nike旋即對adidas提起侵害發明專利訴訟,訴訟進展至2017年11月底,adidas向美國聯邦上訴法院提出上訴並主張Flyknit應屬於常規紡織工藝,不應給予Nike發明專利,目前尚待訴訟結果。 2015年,Nike又對Skechers的編織運動鞋款提起侵害設計專利訴訟, Skechers則以高端針織設計聞名的Missoni產品為證據,要求美國專利審理暨訴願委員會(Patent Trial and Appeal Board,簡稱PTAB)審查 Nike設計專利的有效性,最後PTAB認為有部分Nike的設計專利是無效的,至2017年,Skechers持續向PTAB挑戰Nike有關Flyknit鞋面之設計專利,目前PTAB仍在審理進行中。 Nike的Flyknit專利訴訟戰持續擴大規模,今(2018)年5月3日Nike指控Puma的產品IGNITE Proknit、IGNITE Speed Netfit、Mostro Bubble Knit、Jamming,在2008~2016年間侵害了Nike有關Flyknit技術之7件專利,並於美國麻塞諸塞州聯邦地方法院提起專利侵權訴訟,Puma則回應表示其未侵犯任何Nike的專利,計劃將繼續生產其產品。
何謂「中國製造2025」?中國大陸國務院李克強總理於2015年國務院常務會議研提「中國製造2025」政策,希望提升中國大陸製造業的發展。該政策為因應智慧聯網(Internet of Thing, IoT)的發展趨勢,以資訊化與工業化整合為主,重新發展新一代資訊技術、數控機床和機器人、航空航天裝備、海洋工程裝備及高技術船舶、先進軌道交通設備、節能與新能源汽車、電力裝備、新材料、生物醫藥及高性能醫療器材、農業機械裝備等10大領域,以強化工業基礎能力,提升技術水平和產品品質,進而推動智慧製造、綠色製造。而有別於德國所提出的工業4.0計畫,中國大陸所提出的是理念,係以開源開放、共創共享的智慧聯網推動創新思維。
澳洲國家交通委員會提出「自駕車政策革新報告」,並展開「控制自駕車規範建議」意見徵詢2016年11月澳洲國家交通委員會(簡稱NTC)公布「自駕車政策革新報告」(Regulatory reforms for automated road vehicles Policy Paper),當中釐清對自駕車各項可能遭遇的法規障礙並設定修正時程,2017年4月16號NTC並進一歩依前份文件規劃提出「控制自駕車相關規範建議」討論文件,釐清自駕車的控制定義與相對應規範,並提出法制規範修正內容。 2016年澳洲政府並通過了關於陸路交通科技的「政策原則」(Policy Principles),其中包括政府決策時應基於改善交通安全、效率、永續發展和成果的可能實現,並且應以消費為中心等原則,這些原則構成了澳洲政府的政策框架。 澳洲NTC此份討論文件中,提出應釐清能「控制(in control)」自駕車的對象,此將影響自駕車事故的負責人為誰。NTC提出目前仍應定義人類駕駛為控制自駕車的一方而非自駕系統,以避免人類駕駛做出不適當的操作行為。 NTC並釐清「恰當控制」的定義。「恰當控制」為澳洲道路法規第297條第1項:「駕駛者不得駕駛車輛除非其有做出恰當控制」中所規範。恰當控制被目前的執法機關詮釋為駕駛者應坐在駕駛座上並至少有一隻手置於方向盤上。但「恰當控制」將因自動駕駛系統的操作方式受到挑戰。因此NTC認為「恰當控制」不一定需要將手置於方向盤上,而是要有足夠的警覺性和能即時進行干涉,此定義並應隨著科技發展而修正。 本次政策文件意見徵詢至2017年6月2日,收到意見後NTC將會意見納入未來的全國性實施政策方針,提交給澳洲交通與基礎建設諮議會(Transport and Infrastructure Council)通過,預計於2017年年底前完成此自駕車方針。
美國環境保護署(EPA)發布顯著新種使用規則(SNURs),將影響單壁及多壁奈米碳管(Carbon Nanotubes)之使用美國環境保護署(Environmental Protection Agency,以下簡稱EPA)於2010年9月17日聯邦政府公報中,依據毒性物質管制法(Toxic Substances Control Act,以下簡稱TSCA)section 5(a)(2)授權,發布了顯著新種使用規則(Significant New Use Rules,以下簡稱SNURs)的最終規則(final rule)。此項規則於2010年10月18日生效,任何想要製造、輸入以及加工單壁奈米碳管(single-walled carbon nanotubes,以下簡稱SWCNTs)及多壁奈米碳管(multi-wall carbon nanotubes,以下簡稱MWCNTs)兩項化學物質者,必須依照TSCA section 5(a)(1)要求,在進行上述利用活動的至少90天前,報經EPA核准,否則不得使用。 事實上,EPA曾於前(2009)年6月24日發布上述SNURs的直接最終規則(direct final rule),徵詢公眾意見,並在同年8月21日撤回該規則。在重新提案的規則中,主要是新增SWCNTs、MWCNTs釋放於水中的顯著新種使用態樣,並將已完全反應、結合或嵌入已完全反應之聚合物基(polymer matrix)以及嵌入不再進行機械加工外其他處理之永久硬性聚合物形式(permanent solid polymer form)之SWCNTs、MWCNTs物質,排除在新SNURs適用範圍之外。 目前,依照TSCA section 5(e)之規定,若系爭之化學物質已列名於TSCA section 8(b)所建立之現存(existing)化學物質目錄(INVENTORY)中,其他化學物質生產者欲生產該種化學物質時,並不需再向EFA進行通報程序。然而,若EFA對該列名之化學物質曾發出TSCA section 5(e)下之具風險性命令(risk-based order),則相關之化學物質生產者須於生產前依據TSCA section 5(a)(2)規範中之SNURs規定通報EFA,使得EFA於生產前仍有再次檢驗該系爭化學物質的機會。 這一次,EPA以制訂SNURs之方式,要求所有製造、輸入、加工該項化學物質者,有義務通報任何與原同意命令所定條款不同的使用活動。這樣的規範變動,預計將對奈米材料的製造及運用活動造成不小的影響。