英國於今年5月26日通過「隱私及電子通訊規範」(The Privacy and Electronic Communications Regulations),實現隱私監督之責,以管控cookies或是侵害個人資料之行為。
新法納入歐盟於2009年e隱私指令中所決定之改變,旨在讓網路使用者自行決定資訊服務業或其他事業能儲存多少使用者之紀錄。但業者對此項新要求表示困惑,因此英國之隱私權主管監督機關資訊專員公署(Information Commissioner's Office,ICO)最近出版一份指引,指導網站如何遵守新法使用cookies功能之規定及履行告知義務之要求。然而指引中並未強制規定告知內容與方式,因此業者仍可自行決定如何最有效地履行告知義務。
ICO本週表示新法尚有一年之緩衝期間,讓業者調整使用cookies功能之方式。政府表示目前仍在與瀏覽企業者討論,如何透過瀏覽器頁面之設置取得當事人之同意,而此部分尚未規定在新法中。
「政府的指引太晚公布了,並且缺乏明確性,又無法確定新法是否能允許以瀏覽器技術作為解決之方法,這樣會讓業界無所適從」,任職於Pinsent Masons法律事務所的科技法律專家Clarie McCracken說,「此種非決定性之指引會使業者無法找到標準作法以避免觸犯新法。」。
ICO認為企業在新法正式施行前,最好趕快表明其如何使用cookies功能並制定相關規定以遵守新法。
新法同時要求特定企業當其所蒐集之個人資料遭受駭客攻擊或外洩時,其必須要告知消費者。根據新法,個人資料遭受侵害之定義為:某種安全狀態遭受攻擊,導致與公共電子通訊服務有關之個人資料被故意或不法毀損、滅失、竄改、越權揭露或存取、傳遞、儲存或其他相關利用。當上述情事發生時,公司必須通報ICO,說明大致情況及可能產生之結果,並提出公司將採取之因應措施,同時告知受害之消費者。
印度理工學院的 Deepak Phatak 啟動了一項建立 Knowledge Public License (知識公共授權,簡稱 "KPL" )的計畫,這種授權計畫允許程式人員跟他人分享自己的點子,但是同時保留軟體的修改權。它很像柏克萊軟體發行計畫或 MIT 授權計畫。目的是希望為建立一種環境,開發者既可以借助開放原始碼的合作力量,又能保護個人的利益。這項計畫還有助於舒緩開原碼運動和專屬軟體商之間日趨緊張的關係。 Phatak 的授權計畫有著先天的數量優勢。由於委外的興起和繁榮,印度已經成長為一個重要的軟體發展中心。 Phatak 也發起了一項 Ekalavya 計畫,鼓勵大家提出開原碼運動的新概念。
澳洲發布「健康隱私指引」以降低健康資料之隱私風險澳洲隱私保護辦公室(Office of the Australian Information Commissioner, OAIC)於2019年9月發布「健康隱私指引」(Guide to health privacy)協助健康服務提供者了解及實踐相關規範所制定之隱私義務以確保個人資料安全。依據1988年澳洲隱私法(Privacy Act 1988)規定,健康服務指所有評估、維持、改善或管理個人健康狀況;或是診斷、治療或紀錄個人疾病或健康狀況之行為。而健康服務提供者除了醫院及醫療人員,更包含其他專業人員例如健身房及減肥診所、私立學校及托兒所、遠端醫療服務等所有涉及健康資料並提供健康服務之單位及人員。由於澳洲隱私法要求服務提供者必須積極建立、實施及維護隱私合法處理程序,為了協助所有健康服務提供者確實遵守法定義務,以減少健康資料之隱私風險問題,OAIC制定「健康隱私指引」提出八大步驟要求健康服務提供者確保遵守義務並保障所持有之個人資料: 制定並實施隱私管理計畫,確保遵守澳洲隱私原則(Australian Privacy Principles, APPs)。 制定明確的責任制以進行隱私管理,並及時提供員工幫助與指導。 建立個人資料檔案紀錄,以確認持有之個人資料。 了解法律規範之隱私義務並實施法定流程以履行義務。 定期舉辦員工隱私培訓課程以強化團隊基礎知識。 建立隱私權政策並於網頁上呈現或是提供手冊說明相關內容。 保護所持有之資料不被濫用、遺失或未經授權的修改及揭露等。 制定資料外洩因應措施,針對資料外洩進行危機處理。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
日本總務省展現電信產業改革決心,提出「電信創生計畫」日本總務省於2014年10月31日公布了「電信創生計畫(モバイル創生プラン)宣示其對電信產業改革之決心。鑒於智慧型手機已成為日本國民生活中不可或缺的一環,加上以智慧型手機為行動中心,另結合可攜式裝置、機器間通信(Machine to Machine, M2M)及智慧聯網(Internet of Things, IoT)技術之普及,電信產業將會廣泛地影響社會整體之經濟活動,因此總務省喊出了「更自由、更貼近、更快速、更便利」的政策口號。 首先在自由化的部分,總務省於本月宣布了自明年2015年5月開始,日本將全面解除「SIM卡解鎖限制」,未來電信用戶將可以自由地帶機或攜碼,移轉到通信費率更適合自己的電信業者,並同時展開「SIM卡解鎖指南」(SIMロック解除に関するガイドライン)改正案之意見募集。未來,電信業者有義務為提出需求的消費者進行解鎖,此外,若無任何理由予以回絕,將會受「電氣通信事業法」下授權之業務改善命令之約束。然而,對於消費者而言,若有尚未履行完畢之契約,亦應於繳交違約金後,才得以進行解鎖。 第二,為了使消費者能夠安心、安全地使用智慧型手機,日本政府開始積極推動虛擬行動網路(Mobile Virtual Network Operator, MVNO)之服務。所謂的MVNO係指通訊網路與服務分離之概念,業者本身無須擁有通訊網路,但須申請經營執照,並可向其他傳統電信業者(Mobile Network Operator, MNO)租用系統,經營自有品牌之行動通訊業務。因此日本政府為了盡快推行MVNO之服務,已開始與相關業者做系統整備之促進協議。 第三,為了使電信網路之傳輸更快速,除了持續推行3.5G網路外,自2016年將開始進行4G之商業化。最後在便利化之方面,鑒於未來之電信產業將會涵蓋更多樣化的服務,如自動更新導航地圖、提供居家安全服務等,因此日本政府認為,應透過法規制度之改善,給予電信業者於提供服務時,更友善之環境。除了已在近期開始促進,MVNO業者利用MNO業者之資訊管理資料庫協議外。並預計在下期國會提出之「電氣通信事業法」草案進行以下變更:(1)鬆綁對電信業者之規定,例如從促使業者跨界合作之角度,鬆綁不公平競爭之處理;(2)進一步推動電信業者(包括MNO跟MVNO等)費率之調降。 總務省預測,在整體政策同時推動之下,2016年相較2013年底,將增加約兩倍之MVNO契約(從670萬份倍增到1500萬份);而2016年,相關電信產業之規模將比現行之34.3兆日圓增至45兆日圓。