美國參議院在2011年9月通過發明法修正案(Leahy-Smith America Invents Act),並經總統歐巴馬簽署同意公布,預計新修正的法案內容,將為美國專利制度寫下里程碑。觀察該法案幾項重要變革包括:
一、 專利權之取得:以先申請制(First to file)取代先發明制(First to invent),目的在於增進美國專利制度與國際專利制度的調和,以及確保發明人的權利保障可與國際普遍的制度接軌。新規定將自2013年3月16日開始實施。
二、 先前技術(prior art)之定義與新穎性優惠期(grace period):新法擴張先前技術(Prior Art)之範圍,申請專利之發明於申請日之前,如已見於刊物、已公開使用、已銷售或其他公眾所得知悉者,即因已公開而成為先前技術之一部分,喪失新穎性。惟在例外的情況下,申請專利之發明,在申請日前一年內由發明人或共同發明人自己,或間接透過第三人進行之公開行為等,則不被視為先前技術。
三、 支持小型企業或獨立發明人:修正條文要求美國專利及商標局(USPTO)應與相關智慧財產權協會合作,為小型企業或獨立發明人提供協助,並設立專利監察專案(Patent Ombudsman Program)提供申請專利之相關幫助,同時給予小型企業與微型實體(Micro Entities)最高75%的規費減免優惠。
美國在此次修正其發明法的過程中,納入過去25年來國際專利制度協商後的成果,雖有論者指出該法仍未解決部分問題,然而儘管有這些不足之處,新通過的法案仍解決了舊法時期不合理之處。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
世界衛生組織透過「COVID-19疫苗全球取得機制COVAX」,促進疫苗研發及公平分配世界衛生組織(World Health Organization, WHO)於2020年8月24日公布「COVID-19疫苗全球取得機制(COVID-19 Vaccines Global Access Facility, COVAX)」,由全球疫苗與預防注射聯盟(Global Alliance for Vaccines and Immunisation, GAVI)、流行病預防創新聯盟(Coalition for Epidemic Preparedness Innovations, CEPI)及WHO共同主導,與多家疫苗廠商合作,協助取得多種疫苗組合的授權及核准,促進COVID-19全球疫苗研發及公平分配。 COVAX是WHO「獲取COVID- 19工具加速計畫(Access to COVID-19 Tools Accelerator, ACT Accelerator)」下的疫苗分配機制。ACT-Accelerator透過匯集各國政府、衛生機構、科學界、產業界、民間團體的力量,共同合作開發創新診斷方法、加速融資研發治療工具、制定公平分配與交付疫苗機制、確保衛生系統與社區網路連接等四大領域,以盡快結束大流行疫情。 COVAX作為COVID-19疫苗聯合採購機制,預計2021年底要提供20億劑疫苗,籌資181億美元;由GAVI與高收入國家簽訂投資契約,透過全球融資機制採購9.5億劑疫苗,同時搭配WHO制定的疫苗倫理分配架構,使COVAX能夠集中各國經濟體的購買力,保證候選疫苗的採購數量,鼓勵擁有專業知識的疫苗廠商盡速投入大規模的新疫苗生產,確保參與COVAX的國家及經濟體,皆能迅速、公平公正地取得大量有效的疫苗。 COVAX承諾將為全球92個中低收入經濟體提供參與COVAX的融資工具;超過80個高收入經濟體已提交參與COVAX的意向書,將從公共財政預算中編列全球疫苗研發的捐助資金,並與92個中低收入國家結成疫苗合作夥伴。透過COVAX機制產出的疫苗,將會按照參與國人口比例公平地分配給所有國家,並且優先提供疫苗給衛生醫療工作者、老年人及疾病弱勢群體;隨後再根據各國家需求、易受感染程度與COVID-19威脅情況,提供更多劑量的支援。
普利司通公司就安裝在美國汽車中之零組件價格壟斷乙案認罪,並同意支付4億2仟5佰萬美元刑事罰金美國司法部宣布日商普利司通(Bridgestone Corp.)股份有限公司,就其共謀操縱安裝於汽車中並銷售至美國及其他國家之汽車防震橡膠零組件價格乙案認罪,並同意支付4億2仟5佰萬美元之刑事罰金。 根據俄亥俄州(Ohio)地方法院所提起的一項重罪控訴,該公司於美國及其他國家共謀參與分配銷售、操縱報價及壟斷、提高並維持其出售予豐田(Toyota)、日產(Nissan)汽車公司、富士重工業(Fuji Heavy Industries)公司、鈴木(Suzuki Motor)公司、五十鈴(Isuzu Motors)汽車公司及其某些子公司、加盟和供應商之汽車防震橡膠零組件價格。除了刑事罰金外,普利司通公司並同意配合司法部進行後續之汽車零組件案調查。本認罪協議(plea agreement),業經法院批准。 在2011年10月,普利司通公司即因「海洋軟管」(marine hose)乙案涉嫌壟斷價格及違反「海外貪污防治法」(Foreign Corrupt Practices Act)而遭控訴,經認罪協議並支付2仟8佰萬美元罰金。但於是案答辯中,該公司並未就其同時涉及防震橡膠零組件共謀操縱價格乙情,主動為揭露。該公司未主動揭露上情,乃是本次罰金高達4億2仟5佰萬美元原因之一。 美國司法部副助理部長Brent Snyder表示:「美國司法部反托拉斯署將針對屢犯卻未主動揭露其他反競爭行為者,採取強硬態度。本案之鉅額罰金,即重申該署致力於令企業就其傷害美國消費者之行為,負起責任。」普利司通公司遭指控因價格壟斷違反謝爾曼法案,依法最重可處1億美元之刑事罰金。如企業因犯罪所獲利益之兩倍數額,或犯罪被害人所受損失之兩倍數額,其一逾前開法定最高罰金時,得加重至該數額。
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。