FCC通過許可有線電視系統對基本電視服務進行加密,以對抗盜接訊號

  美國聯邦通信委員會(FCC)批准,有線電視業者可對其基本電視服務進行完全加密,有線電視用戶將需要向有線電視業者租用機上盒或使用CableCARD的技術,以繼續收看有線電視。在本項新規則發布之前,有線電視業者被禁止在基本服務加密,有線電視用戶不需租用額外設備便能收看基本電視服務內容。業界人士表示,據估計目前約有近5%非法盜接的服務,造成每年約5億美元的收入損失,此一新規則有助於對抗訊號盜接的問題。

 

  同時隨著數位有線電視普及程度的提高,大多數有線電視用戶已經透過機上盒或CableCARD技術收看有線電視,僅少部份用戶可透過特殊裝置接收數位電視基本服務,但因為此種接收方式無須加密,因此存在有盜接的問題,因此有線電視業者希望FCC能夠放寬規定,使業者可將整個有線電視系統均加密傳輸,避免訊號盜接的問題。

 

  然而相對的,一些第三方公司所生產的設備將因為有線電視系統業者的加密,而無法提供低成本的替代裝置,有線電視用戶將必須向有線電視公司租用機上盒,部份第三方公司生產的機上盒具有DVR功能,如果系統業者完全加密他們的內容,這些第三方設備的生產將必須花費額外的成本與時間與系統業者協商。有線電視業者如Comcast自然是抱持樂觀其成的看法,全系統加密使業者可在遠端管理電視訊號之播送,而無須至消費者家戶進行,可節省人力與成本。

相關連結
※ FCC通過許可有線電視系統對基本電視服務進行加密,以對抗盜接訊號, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=67&tp=1&d=5879 (最後瀏覽日:2025/04/22)
引註此篇文章
你可能還會想看
歐盟推出《網路韌性法案》補充歐盟網路安全框架

  歐盟為提升網路數位化產品之安全性,解決現有網路安全監管框架差距,歐盟執委會於2022年9月提出《網路韌性法案》(EU Cyber Resilience Act)草案,對網路供應鏈提供強制性網路安全標準,並課予數位化產品製造商在網絡安全方面之義務。該法案亦提出以下四個具體目標:   1.確保製造商對於提升產品之網路安全涵蓋整個生產週期;   2.為歐盟網路安全之合法性創建單一且明確之監管架構;   3.提高網路安全實踐之透明度,以及製造商與其產品之屬性;   4.為消費者和企業提供隨時可用之安全產品。   《網路韌性法案》要求製造商設計、開發和生產各種硬體、有形及軟體、無形之數位化產品時,須滿足法規要求之網路安全標準,始得於市場上銷售,並應提供清晰易懂之使用說明予消費者,使其充分知悉網路安全相關資訊,且至少應於五年內提供安全維護與軟體更新。   《網路韌性法案》將所涵蓋之數位化產品分為三種類別(產品示例可參考法案附件三):I類別、II類別,以及預設類別。I類別產品之網路安全風險級別低於II類別產品、高於預設類別,須遵守法規要求之安全標準或經由第三方評估;II類別為與網路安全漏洞具密切關連之高風險產品,須完成第三方合格評估始符合網路安全標準;預設類別則為無嚴重網路安全漏洞之產品,公司得透過自我評估進行之。法案另豁免已受其他法律明文規範之數位化產品,惟並未豁免歐洲數位身份錢包、電子健康記錄系統或具有高風險人工智慧系統產品。   若製造商未能遵守《網路韌性法案》之基本要求和義務,將面臨高達1500萬歐元或前一年度全球總營業額2.5%之行政罰鍰。各歐盟成員國亦得自行制定有效且合於比例之處罰規則。

保險新品~開放原始碼保單

  由於開放原始碼的風氣盛行,使得許多 軟體業者 在使用開放原始碼軟體開發自家的軟體產品時,常不小心 逾越開放原始碼的授權範圍而陷身於 侵權的風險中。大抵一般比較常見的侵權情形,如企業開發專有軟體時, 利用單一或多樣以上的開放原始碼元件來建置,如交易工具或財產庫存管理應用程式等,而將這些程式流通於內部企業網路或是傳遞給外部客戶使用時,已構成”散佈”行為,是觸犯了開放原始碼 GPL ( General Public License ,通用公共許可 )授權 。   日前位於紐約的 開放原始碼風險管理公司( Open Source Risk Management , OSRM )結合 Lloyd's 保險業者 Kiln 及 Miller 保險經紀公司推出開放原始碼保單來承擔企業使用開放原始碼的風險,該保險單最高賠償金額為 1000 萬美元。平均而言,企業若是投保 100 萬美元的保單,每年大約必須支付 2 萬美元的保險費。

日本要求半導體等重要技術技轉前須進行報告,以強化技術管理

日本經濟產業省下之貿易經濟安全保障局,於2024年9月公布「建立強化技術管理之新官民對話框架」文件(技術管理強化のための新たな官民対話スキームの構築について),指出在目前複雜的地緣政治情勢下,企業難以獨自進行技術管理,故須透過強化官民對話,讓雙方可共享現況及問題,俾利政府檢討管理措施。 經產省為強化技術管理,擬修正依《外匯與外國貿易法》(外国為替及び外国貿易法,以下簡稱外為法)授權制定之省令及告示,要求業者於技轉「重要技術」時,須依外為法第55條第8項進行事前報告,以利後續透過官民對話達成共識。經產省強調,上述規定目的不是禁止技術移轉,而是進行適當之技術管理,故原則希望能透過官民對話來解決問題。惟若在雙方對話後,經產省認為有技術外流之虞時,仍會要求業者申請許可。 根據經產省於2024年9月6日公布之省令及告示修正案,以下4大領域10項技術被列為「重要技術」: 1.電子元件:積層陶瓷電容(積層セラミックコンデンサ(MLCC))、SAW和BAW濾波器(SAW及びBAWフィルタ)、電解銅箔、介電質薄膜(誘電体フィルム)、鈦酸鋇粉末(チタン酸バリウム粉体)。 2.纖維:碳纖維(炭素繊維)、碳化矽纖維(炭化ケイ素繊維)。 3.半導體:光阻劑(フォトレジスト)、非鐵金屬材料(非鉄金属ターゲット材)。 4.電子顯微鏡:掃描式電子顯微鏡(走査型電子顕微鏡(SEM))、穿透式電子顯微鏡(透過型電子顕微鏡(TEM))。

因應使用「生成式AI(Generative AI)」工具的營業秘密管理強化建議

2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。 該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。 實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之: 一、人員面: 1.員工(教育訓練、合約) 在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。 在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。 2.生成式AI工具提供者(合約) 針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。 二、技術方面: 建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。 綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP