英國政府推動Midata計畫,促進智慧商業創新及跨產業應用

  近來國際間許多國家投入智慧商業及智慧消費之發展,為兼顧保障個人資料權利前提下,鼓勵產業界從事商業創新,英國商務創新技術部(Department for Business, Innovation & Skills)於2013年7月宣布促成「Midata創新實驗計畫平台」(midata innovation lab),由英國政府、企業界、消費者團體、監管機構和貿易機構共同組成,此為示範性自律性組織,參與之業者/機構於應消費者要求(consumer’s request)情形下,將所擁有消費者資料,特別是交易資料(transaction data),以電子形式及機器易讀取形式(electronic, machine readable format)對「我的資料」(Midata)體系公開(release);並且,將可更便利消費者利用這些資料瞭解自己的消費行為,在購買產品和服務時可以做出更為明智的選擇。

 

  英國商務創新技術部係於2011年4月,開始提出所謂「Midata計畫」:於「更好選擇;更好交易環境;提昇消費者權力」政策(Providing better information and protection for consumers),宣示推動「Midata計畫」,作為提昇資訊力量(power of information)重要策略。為積極推動,「Midata計畫」,並協助產業界能有更詳細遵循指引,於2012年7月公告「Midata政府產業諮詢報告」(midata: government response to the 2012 consultation),同年12月出版「Midata隱私影響評估報告」 (midata: privacy impact assessment report)。

 

  為配合上述政策施行,由產業界、組織、政府機構所共同組成的「Midata創新實驗計畫平台」(midata innovation lab),已開始展開運作。此平台認為,近來越來越多實務情形證明,個人資料對於企業而言已被視為日漸重要的資產,並且未來將成為提供更個人化、多元化之產品服務之重要基礎。倘若能在確保消費者個人資料相關權利之前提下,促成產業界積極投入發展,以「我的資料(Midata)創新實驗計畫」為運作平台,對於企業所持有個人資料,兼顧企業與消費者原則共同獲益,將可因應趨勢取得商業先機。

 

  以英國商務創新技術部規劃政策,前期試行推動先以「核心產業」(core sectors)(金融產業、電信產業、能源產業)為導入適用,待實施具一定成效後,將延伸推廣至其他產業領域(non-core sectors),而後也將由現行初期以產業自律性參與計畫模式,進展至以法令規範強制實施的階段。 

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 英國政府推動Midata計畫,促進智慧商業創新及跨產業應用, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=67&tp=1&d=6312 (最後瀏覽日:2024/06/17)
引註此篇文章
你可能還會想看
歐盟理事會公告延長對俄羅斯經濟制裁

  歐盟理事會(European Council)於2023年1月27日決定將針對俄羅斯特定經濟部門的限制措施延長六個月至2023年7月31日。歐盟對俄羅斯的制裁可回溯自2014年「克里米亞危機」,俄羅斯破壞烏克蘭局勢穩定。自2022年2月以來,鑑於俄羅斯對烏克蘭軍事侵略,歐盟制裁範圍大幅擴大(截至2022年12月16日共有9輪制裁)。歐盟的制裁範圍廣泛,涉及如下不同領域的措施:   (1)貿易層面:對技術和軍民兩用貨品(dual-use goods)、提升俄羅斯工業能力交易、陸海空運輸以及奢侈品交易等進行限制。   (2)能源層面:禁止向俄羅斯購買原油及特定石油產品;或透過第三國將原油及特定石油產品從俄羅斯進口或移轉到歐盟境內。   (3)金融層面:將俄羅斯銀行踢出「環球銀行金融電信協會」(SWIFT)支付系統,以及限制提供給俄羅斯的金融服務(如存款、信託、信評等)。   (4)資訊層面:終止透過假消息(disinformation)支持克里姆林宮的廣播活動和廣播許可證。   歐盟自2022年2月24日以來,針對俄羅斯全面入侵烏克蘭採取史無前例的強硬制裁措施。歐盟並藉此傳達其支持烏克蘭在國際公認邊界內的獨立、主權以及領土完整。

美國將修法全力圍堵政府資料外洩

  美國國會於今年(2009)11月18日提出「聯邦檔案安全分享法案(Secure Federal File Sharing Act)」,內容主要是限制所有政府部門員工(包含約聘制人員),在未經官方正式同意之前,不得下載、安裝或使用任何點對點傳輸(Peer to Peer, P2P)軟體。期望藉由該法案的通過實施,徹底防堵政府及相關個人機敏資料的外洩。   該法案的制定,最初來自於政府部門對其財務資料保護的要求,早於2004年白宮管理及預算辦公室(The White House Office of Management and Budget)即已建議聯邦政府的各個單位應禁止其職員使用P2P軟體,以防止資料外洩。而於將近一個月前,國會道德委員會取得多位國會議員的財務狀況、經歷及競選贊助金額,並作成調查報告,未料一位新進職員將該份未經加密保護的報告存於自家裝有前述P2P軟體的電腦硬碟中,從而導致該份報告內容全部外洩。此一事件立即對向來注重政府及個人資料保護的美國投下了震撼彈,也促使該法案正式浮出檯面。   歐此項法案的提出毫無意外地得到視聽娛樂產業界的正面支持。主因來自多數人藉由此種軟體在網際網路上分享音樂、影片或其他應用軟體,時常侵害他人的智慧財產權,而法案的內容則是要求政府部門員工無論是在工作或是家中使用P2P軟體都須取得官方授權,無疑是直接限制了上述的分享行為。娛樂業者更進一步指出,P2P軟體對資訊安全的危害在於多數人無法明確知道該軟體的運作方式,而無法對其做正確的設定,使得軟體一旦被啟動,電腦內的所有資料:包含個人的社會安全卡號碼、醫療及退稅紀錄等,就立即暴露於網際網路之中!對此,除了推動此項法案的官員大聲疾呼:「用個人自律的方式防止資料外洩已經失敗,證明國會應該有所行動。   美國錄音產業協會(Recording Industry Association of America)則是預測前述國會調查報告的外洩,將會是資安法案重整的強力催化劑。

日本自動駕駛戰略本部新近政策規劃

  日本鑒於為減少交通事故與因應少子化,與汽車的ICT革命等議題,由國土交通省於2016年11月25日設立「自動駕駛戰略本部」(自動運転戦略本部),並於同年12月9日召開第一次會議。討論的範圍則包括:為實現自動駕駛的環境整備、自動駕駛技術的研發、普及與促進,以及為實現自動駕駛的實證與社會試驗。   會議結論則由國土交通大臣指示針對「車輛的技術基準」、「年長者事故對策」、「事故發生時的賠償規則」、「大卡車列隊行走」、「以非平地休息服務站為據點的自動駕駛服務」等議題速成立工作小組,將對自動駕駛所應用技術進行各類型實證試驗。   其中,在「以非平地休息服務站為據點的自動駕駛服務」方面,已於2017年2月展開補助試驗計畫的募集;預計驗證的項目有分別針對一般(搭載2-10人)以及大型車輛(10人以上),結合GPS、雷達、攝影機等來瞭解障礙物資訊的車輛自動控制技術。   而在「大卡車列隊行走」方面,國土交通省則是在2016年已開始的實證試驗基礎上持續拓展。未來在2019年中後,並規劃將驗證範圍擴展至高速公路上驗證更長距離的自動駕駛。

經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

TOP