日本經產省預計向國會提出「不正競爭防止法」修正草案進行審議

刊登期別
第27卷第5期
 
隸屬計畫成果
經濟部技術處產業科技創新之法制建構計畫成果
 

※ 日本經產省預計向國會提出「不正競爭防止法」修正草案進行審議, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=67&tp=1&d=7064 (最後瀏覽日:2024/09/15)
引註此篇文章
你可能還會想看
英國展開「碳排放交易框架」修正意見徵集,擬將溫室氣體移除技術納入現行機制

英格蘭、蘇格蘭、威爾斯政府,以及北愛爾蘭農業、環境和鄉村事務部於2024年5月23日共同提出「溫室氣體移除納入碳交易框架」(Integrating Greenhouse Gas Removals in the UK Emissions Trading Scheme)聯合諮詢文件,擬將「溫室氣體移除」(Greenhouse Gas Removals, GGRs)技術納入現行英國碳排放交易體系。GGRs係指主動將大氣中的溫室氣體移除之方法,又稱「二氧化碳移除」(Carbon Dioxide Removal, CDR)、「負碳技術」(Negative Emission Technologies, NETs),此類技術被認為能協助「難減排產業」減少排放。 此次意見徵集主要針對以下四大面向: 1.基本原則:將GGRs整合進UK ETS,須以維持減碳誘因、確保市場誠信、創造長期有效率的碳權交易市場、環境友善、具備可操作性、最小干預性、未來靈活性保障、考量財務影響等原則為基本前提。 2.總量管制:UK ETS於納入GGRs後,預計仍將維持當前總量上限,以避免實質上增加企業的排放容許量。 3.配額發給:GGRs能獲得的配額,擬採取「事後發給」的方式,於移除完成並經過驗證後,才發給配額,以維持交易市場的可信性。 4.市場整合:英國目前暫不考慮建立獨立的溫室氣體移除交易市場,擬將GGRs完全整合進既有的UK ETS中,並透過總量及需求控制或免費配額等措施調節市場供需,穩定並促進市場發展。 英國政府相信,透過將GGRs納入現行UK ETS中,可以增加企業對於碳移除之需求,提高負碳技術的投資誘因,進而持續對於淨零排放的目標有所貢獻。

歐盟創新採購機制觀測

歐盟執委會提出《歐盟數位十年網路安全戰略》

  歐盟執委會於2020年12月16日針對未來十年歐盟數位發展,提出《歐盟數位十年網路安全戰略》(The EU's Cybersecurity Strategy for the Digital Decade),以支持塑造歐盟的數位未來(Shaping Europe's Digital Future)、歐洲復甦計畫(Recovery Plan for Europe)和歐洲安全聯盟(EU Security Union Strategy)。該戰略說明應如何加強歐盟共同抵禦面對網路攻擊的應變能力,並確保民眾及企業都能在可信賴的數位服務中受益。   由於COVID-19大流行,加速工作模式的變化,2020年歐盟約有40%的民眾遠距辦公,而同年網路犯罪對全球經濟造成的影響估計達到5.5億歐元。因此,為維護全球開放網路的穩定運作,在保護網路安全的同時,亦應保護歐盟的共同價值觀與人民的基本權利,在監管、投資與政策上提出三點建議: 韌性、技術主權和領導(Resilience, Technological Sovereignty and Leadership):根據網路與資訊系統安全指令(Directive on Security of Network and Information Systems, NIS Directive)修訂更嚴格的監管措施,改善網路和資訊系統的安全。並建立由AI推動的資安監控中心(AI-enabled Security Operation Centres),及時避免網路攻擊。 建立防禦、嚇阻和應變能力(Building Operational Capacity to Prevent, Deter and Respond):逐步建立歐盟聯合網路安全部門,加強歐盟各成員國之間的合作,以提高面對跨境網路攻擊時的應變能力。 透過加強合作促進全球開放網路空間(Advancing a Global and Open Cyberspace):希望與聯合國等國際組織合作,透過外部力量共同建立全球網路安全政策,以維護全球網路空間的穩定及安全。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

TOP