柏克萊市開啟奈米科技管理規範的先河

  美國柏克萊﹙Berkley﹚市議會日前無異議通過既有有害物質法令修正之決議,企圖涵蓋奈米物質之情形,此其為奈米科技地方性立法之首例。此項行動迫使研究人員及製造人必須於研究或生產過程中,申報所使用的奈米材料,以及提出有效管理奈米物質的證明。
在商業世界當中,奈米科技的目標是在原子或分子層次,藉由改變或創造新的成份,以發展出新的產品及材料。不過,這些材料是否會產生環境及健康方面的問題,目前尚不得而知。


  此項修正已蘊釀兩年。市府官員表示,此項法規修正主要在於監管奈米新創事業﹙startups﹚或小型企業﹙small business﹚,而非國家型實驗室﹙the national lab﹚所造成的影響,因為後者目前係由美國能源部﹙Department of Energy﹚所管理,地方法規對其並無管理權限。一開始,國家實驗室相當反對柏克萊市的這項計畫;不過,經過溝通其表示未來將繼續支持該市市府的行動。


  負責柏克萊市有害物質管理事務的Nabil Al-Hadithy表示,他期許這項新法成為其他城市有效管理奈米物質的榜樣,並希望其他城市能夠將這樣類型的規範,有效運用在全加州的健康及安全法規上。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 柏克萊市開啟奈米科技管理規範的先河, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=1044&no=67&tp=1 (最後瀏覽日:2026/01/25)
引註此篇文章
你可能還會想看
歐盟個資保護委員會公布GDPR裁罰金額計算指引

歐盟個人資料保護委員會 (European Data Protection Board, EDPB)在徵詢公眾意見後,於今(2023)年5月24日通過了「歐盟一般資料保護規則行政裁罰計算指引04/2022」(Guidelines 04/2022 on the calculation of administrative fines under the GDPR)。此一指引,旨在協調各國資料保護主管機關(Data Protection Authorities, DPAs)計算行政罰鍰的方法,以及建立計算《歐盟一般資料保護規則》(General Data Protection Regulation, GDPR )裁罰金額的「起點」(Starting Point)。 時值我國於今(2023)年5月29日甫通過《個人資料保護法》之修法,將違反安全措施義務的行為提高裁罰數額至最高1500萬,金額之提高更需要一個明確且透明的定裁罰基準,因此該指引所揭露的裁罰計算步驟值得我國參考。指引分為五個步驟,說明如下: 1.確定案件中違反GDPR行為的行為數以及各行為最高的裁罰數額。如控管者或處理者以數個行為違反GDPR時,應分別裁罰;而如以一行為因故意或過失違反數GDPR規定者,罰鍰總額不得超過最嚴重違規情事所定之數額(指引第三章)。 2.確定計算裁罰金額的起點。EDPB將違反GDPR行為嚴重程度分為低度、中度與高度三個不同的級別,並界定不同級別的起算金額範圍,個案依照違反GDPR行為嚴重程度決定金額範圍後,尚需考量企業的營業額度以定其確切金額作為裁罰數額起點(指引第四章)。 3.控管者/處理者行為對金額的加重或減輕。評估控管者/處理者過去或現在相關行為的作為加重或減輕的因素而相應調整罰鍰金額(指引第五章)。 4.針對各違反行為,參照GPDR第83條第4項至第6項確定行政裁罰上限。GDPR並沒有對具體的違反行為設定固定的罰款金額,而是對不同違反行為規範了裁罰最高額度上限,EDPB提醒,適用第三步驟或下述第五步驟所增加的額度不能超過GDPR第83條第4至第6項度對不同違反行為所訂的最高額度限制(指引第六章)。 5.有效性、嚇阻性與比例原則的考量。個資保護主管機關應針對具體個案情況量以裁罰,必須分析計算出的最終額度是否有效、是否發揮嚇阻以及是否符合比例原則,而予以相應調整裁罰額度,而如果有客觀證據表明裁罰金額可能危及企業的生存,可以考慮依據成員國法律減輕裁罰金額(指引第七章)。 EDPB重申其將不斷審查這些步驟與方法,其亦提醒上述所有步驟必須牢記,罰鍰並非簡單數學計算,裁罰金額的關鍵因素應取決具體個案實際情況。

日本下議會通過綠色法案

  為加強促進日本相關產業與政府政策對於太陽能和其他再生能源之投資比重,日本下議院(lower house of parliament)日前於8月23日通過綠色法案(目前未有正式名稱,外媒多以Green Bill稱之),該法案近日將由日本上議院(upper house of parliament)進行進一步的確認與審議。目前預計綠色法案和其他相關的配套法律措施將於2012年7月生效實施。   目前日本境內的總電力生產來源中,經由核能發電廠所生產之電力占日本總生產電量之30%,而日本政府預計於2030年將該種核能發電廠所生之電力提升至總生產電量比例之50%。然而,在日本福島於今年(2011)3月遭受地震和海嘯波及之後,其所衍生之核能發電廠輻射外漏事件,促使日本政府對於其現有之核能電廠興建計畫開始進行反思,且日本大眾對於此種原子能量之安全性,及相關的國家能源政策亦產生了質疑聲浪。日前,日本政府在思考其現有的能源政策走向,以及相關現況之檢視後,乃於2011年8月23日由其下議院通過綠色法案。   日本綠色法案的主要目的乃為減少當前日本主要電力生產來源為核能發電之現況,並且達成國際共同協議所訂定之減少溫室氣體排放目標。即便該綠色法案具有促進相關綠色能源電力發電設施的建置率升高,並且加速相關投資市場活絡的連帶效應,然而由於該法案目前針對各項綠色能源的使用收費價格細節尚未加以規範,因此對於未來消費者權益與鼓勵投資者投資各項新興綠色能源設施間之支出費用該如何加以平衡,仍為一個不確定的問題,而有待日後各相關部會加以討論規範。

美國加密法案隨潮流再起

  緣起於2016年的加密法案(ENCRYPT Act),由於今年發生了臉書劍橋分析事件,以及歐盟GDPR的影響,本此法案再提的聲勢如浪潮襲來,不僅眾多議員附和,連企業(如:電子前線基金會Electronic Frontier Foundation,EFF)都予以支持。   加密法案的主要內容係以兩方面進行加密應用之保護, 各州州政府不得授權或要求產品或服務的製造商、開發商、銷售商或供應商,(A)設計或更改產品或服務中的安全功能,以供其進行監視或允許其進行實體搜索;(B)使其有能力解密或便於理解加密應用後的內容。 各州州政府不得禁止加密或類似安全功能的產品或服務,進行製造、銷售或租賃、提供銷售或租賃, 或向公眾提供覆蓋的產品或服務。此外,法案亦針對相關服務或產品的定義作了明確的說明。   本法案的主要提案者美國眾議員Ted Lieu指出,與加密或資料存取相關的問題,皆應在聯邦政府的層級進行討論,而就其本身電腦科學的專業,指出在各州間保有不同的加密應用執法標準,對資安、消費者、創新,以及執法本身都是不利的,引此本法案的推動旨在強化州際商業和經濟安全,以及網路安全問題,希望能對加密應用議題作全國性的討論,而不會損害使用者在過程中的安全性。

美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用

  在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。   美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論­­—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。   與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。   但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。

TOP