當蘋果公司一宣佈新的產品iPhone將上市,思科系統公司即在星期三(2007年1月10日)控告蘋果侵害iPhone商標權。思科在7年前就已經註冊iPhone的商標,蘋果好幾次企圖向思科表明想要取得iPhone的商標權,但都被思科拒絕。思科資深副總裁馬克‧賈伯斯表示,「蘋果公司的新產品十分具有吸引力,但是他們不應該未經過思科允許,就使用iPhonee商標。」此次提出控告不但保護思科的iPhone商標免於被蘋果使用,且預防公司可能有的損害。
蘋果公司發言人娜塔莉‧凱瑞絲說,我們認為思科的控告十分無聊,而且早已有很多家公司使用iPhone的商標在寬頻電話上,蘋果是第一個將iPhone商標用在手機的公司,我們相信思科宣稱擁有iPhone商標權不足以來對抗蘋果,我們相當有信心能戰勝這場戰。
波士頓律師事務所Bromberg & Sunstein創設者布魯斯‧桑斯坦表示,思科為iPhone商標註冊權人,在法律上具有優勢,蘋果唯一可選擇的抗辯,就是宣稱i系列的商標名稱,例如iPod, iTunes和 iMac,早已造成消費者的混淆,消費者已經無法辨別iPhone是由誰所製造的。桑斯坦進一步說明,蘋果雖宣稱他們在澳洲擁有iPhone商標權,但商標權為屬地主義,因此此項宣稱對於在美國已擁有iPhone商標權的思科並無太大的影響。
美國總統歐巴馬於2009年2月26日提出的預算計畫書中(A New Era of RESPONSIBILITY: The 2010 Budge),提議增加無線頻譜收費(wireless spectrum fee)以幫助打銷1.7兆美元的財政赤字,該項提議預計在未來十年內,將為國庫帶來480億美元的財政收入,惟此提議卻遭質疑內容不夠清楚,且可能有礙原先政府提倡更有效率地使用頻譜之目的。 目前相關收費的細節不明。由於先前業者經由拍賣,以高昂價格取得頻譜執照主要係為提供語音及數據服務使用,因此外界推測此費用增加計劃可能針對電視與廣播頻譜收取頻率執照費。不過本案在送交眾議院審議前仍有改變之可能。 歐巴馬執政團隊於提出該項計畫後,Sprint Nextel與Verizon Wireless即刻提出問題,希望進一步了解其內容與相關規範,但白宮尚未針對該等問題做出回覆。收費標準設定勢必對現有現有廣電及電信業者,甚至頻譜交易市場造成影響,甚至影響頻譜使用的效益。 4月預算管理局(OMB)將提出的預算案中,會揭露更多有關該項收費增加的計劃說明。
新加坡「智慧財產中心藍圖」(IP Hub Master Plan)自2013年起,新加坡綜合考量其天然資源匱乏之劣勢與位處東南亞經貿核心之優勢,提出「智慧財產中心藍圖」(IP Hub Master Plan),目標在10年內讓新加坡成為亞洲的全球智慧財產營運中心(IP Hub),藉以打造新加坡作為亞洲金融與法律中心之重要地位;「智慧財產中心藍圖」的具體規劃包含在「交易與管理」、「高值智財申請」與「爭議解決」等三大面向,成為匯聚亞洲且面向全球的智財營運中心。 在考量全球經濟成長力趨緩,世界各國紛紛加大投資創新與數位轉型的趨勢下,新加坡智財局(IPOS)於2017年再次更新這份藍圖:盤點自本藍圖提出迄今的各項執行成果,並探討如何與世界趨勢接軌。在更新版藍圖中強調未來智慧財產在具創新力公司資產內的比重將遠高於實體財產,對智財體制的依賴將與日俱增,新加坡應及早因應以提供新創產業包含智財保護、管理與最大化智財價值等協助,以打造未來產業競爭力。 更新版藍圖引用OECD「創新就是將創意帶往市場」之定義,智財產業將成為創新型經濟(innovation-driven economy)中的關鍵。根據IPOS估計,智財交易與管理活動將為新加坡在未來5年創造至少15億新幣的產值,而未來的挑戰在於提高「智財創造」的便利、「智財保護」的普及,以及「智財商業化」的推進等三大面向;因此IPOS將加強智財檢索與政府機關間合作、協助中小企業導入智財管理制度提升企業效益,並打造無形資產評價、交易與融資平台,以達成更新版藍圖所提出之挑戰目標。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
法國國家資訊自由委員會將推出符合GDPR的人工智慧操作指引(AI how-to sheets)法國國家資訊自由委員會(CNIL)於2023年10月16日至11月16日進行「人工智慧操作指引」(AI how-to sheets)(下稱本指引)公眾諮詢,並宣布將於2024年初提出正式版本。本指引主要說明AI系統資料集建立與利用符合歐盟一般資料保護規則(GDPR)之作法,以期在支持人工智慧專業人士創新之外,同時能兼顧民眾權利。 人工智慧操作指引主要內容整理如下: 1.指引涵蓋範圍:本指引限於AI開發階段(development phase),不包含應用階段(deployment phase)。開發階段進一步可分為三階段,包括AI系統設計、資料蒐集與資料庫建立,以及AI系統學習與訓練。 2.法律適用:當資料處理過程中包含個人資料時,人工智慧系統的開發與設計都必須確定其適用的法律規範為何。 3.定義利用目的:CNIL強調蒐集及處理個資時應該遵守「明確」、「合法」、「易懂」之原則,由於資料應該是基於特定且合法的目的而蒐集的,因此不得以與最初目的不相符的方式進一步處理資料。故明確界定人工智慧系統之目的為何,方能決定GDPR與其他原則之適用。 4.系統提供者的身分:可能會是GDPR中的為資料控管者(data controller)、共同控管者(joint controller)以及資料處理者(data processor)。 5.確保資料處理之合法性:建立AI系統的組織使用的資料集若包含個人資料,必須確保資料分析與處理操作符合GDPR規定。 6.必要時進行資料保護影響評估(DIPA)。 7.在系統設計時將資料保護納入考慮:包含建立系統主要目標、技術架構、識別資料來源與嚴格篩選使用…等等。 8.資料蒐集與管理時皆須考慮資料保護:具體作法包含資料蒐集須符合GDPR、糾正錯誤、解決缺失值、整合個資保護措施、監控所蒐集之資料、蒐集之目的,以及設定明確的資料保留期限,實施適當的技術和組織措施以確保資料安全等。 對於AI相關產業從事人員來說,更新AI相關規範知識非常重要,CNIL的人工智慧操作指引將可協助增強AI產業對於個資處理複雜法律問題的理解。