當蘋果公司一宣佈新的產品iPhone將上市,思科系統公司即在星期三(2007年1月10日)控告蘋果侵害iPhone商標權。思科在7年前就已經註冊iPhone的商標,蘋果好幾次企圖向思科表明想要取得iPhone的商標權,但都被思科拒絕。思科資深副總裁馬克‧賈伯斯表示,「蘋果公司的新產品十分具有吸引力,但是他們不應該未經過思科允許,就使用iPhonee商標。」此次提出控告不但保護思科的iPhone商標免於被蘋果使用,且預防公司可能有的損害。
蘋果公司發言人娜塔莉‧凱瑞絲說,我們認為思科的控告十分無聊,而且早已有很多家公司使用iPhone的商標在寬頻電話上,蘋果是第一個將iPhone商標用在手機的公司,我們相信思科宣稱擁有iPhone商標權不足以來對抗蘋果,我們相當有信心能戰勝這場戰。
波士頓律師事務所Bromberg & Sunstein創設者布魯斯‧桑斯坦表示,思科為iPhone商標註冊權人,在法律上具有優勢,蘋果唯一可選擇的抗辯,就是宣稱i系列的商標名稱,例如iPod, iTunes和 iMac,早已造成消費者的混淆,消費者已經無法辨別iPhone是由誰所製造的。桑斯坦進一步說明,蘋果雖宣稱他們在澳洲擁有iPhone商標權,但商標權為屬地主義,因此此項宣稱對於在美國已擁有iPhone商標權的思科並無太大的影響。
美國第9巡迴上訴法院(9th Circuit)於2015年7月6日對外宣布Multi Time Machine v. Amazon案的見解,其推翻地方法院看法,認定被告Amazon公司提供的服務有侵害原告Multi Time Machine公司商標權之虞。 本案原告Multi Time Machine公司是一家製作手錶的廠商,在被告Amazon公司的網站上有提供零售服務。原告認為被告網站提供之服務,可使消費者搜索網站內的物品,但其所得之結果(含圖片)卻容易令人混淆,如搜尋原告的MTM手錶(為Multi Time Machine之商標),會將商標權人及其他廠商的商品都包含在內,導致消費者誤認為其他廠商手錶也是由MTM製造,進而購買非原告公司生產之手錶。原告因而向地方法院提出訴訟,認為被告Amazon公司侵害其商標權,違反聯邦法典內之Lanham Act的第1114條(1)(a)及第1125條(a)(1)規定。但洛杉磯地方法院認為被告行為並未侵害商標權,原告不服故提起上訴。 第9巡迴上訴法院採用1979年AMF v. Sleekcraft Boats案認定之方式,並於2011年Network Automation v. Advanced System Concepts案後發展出的測試標準,用以判斷有無侵害商標權。其標準包含:1.商標的強度、2.商品近似或相關連程度、3.與商標的相似性、4.實際混淆之證據、5.銷售管道、6.消費者在意程度、7.被告意圖、8.擴展之可能性。上訴法院認為,本案除了3、5、8三項較無關外,其餘5項因素經法院研究結果,原告商品在被告網站上販售時,1、2、7於原告影響較大,而4、6是被告提供服務(即供消費者購買)時須在意的。因此,綜合判斷之結果,被告行為已可能侵害原告之商標權,故推翻地方法院之判決結果,發回地方法院續行審理,本案後續判決進展及結果實值持續觀察。
英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。
英國「數位紅利」頻譜管理政策簡介 全球Open Data成功及挑戰之關鍵報告根據全球資訊網基金會(World Wide Web Foundation)及英國開放資料協會(Open Data Institute)指出,全球77個國家正進行Open Data政府開放資料政策,但實際運作上,各國政府提供公眾近用之資料集佔不到全世界政府資料的10%,呈現各國Open Data政策實行還有很大進步空間。 全球資訊網基金會與英國開放資料協會所合作的網絡平台-政府開放資料研究網絡(Open Data Research Network),針對各國政府開放資料執行狀況進行評比並提出Open Data Barometer研究報告。此報告指出,英國政府開放資料執行及成效排名第一,其次排名陸續為美國、瑞典、紐西蘭、丹麥、挪威。除此之外,專以倡導開放知識、資料、內容的國際非政府組織,開放知識基金會(Open Knowledge Foundation),則提出基於Open Data可用性及近用性進行70個國家的排名,英國仍是第一名,其次為美國、丹麥、挪威、荷蘭。從上述兩項研究報告中,英國在Open Data政策落實的成效受到高度肯定,而歐美地區仍在Open Data政策實行上領先世界其他地區的國家。 Open Data Barometer研究報告指出,目前各國政府傾向不提供具潛在爭議性的政府資料,但此類資料往往具再利用價值,例如政府財政預算及交易資料、公司登記、土地登記等相關資料。全球資訊網創始人Berners Lee表示,政府及企業不應考量提供資料集而無法收取費用,或有意掩蓋政治敏感之資料來保護政治利益,而對於公布會造就人民生活的重大進步但具爭議性之資料集,感到卻步。 目前多數國家開放資料之機器可讀性資料與資料集之免費授權(Open License)皆少於7%,報告中說明全球資料集實際可用性仍偏低,亦發現各國提供資料之收費不僅沒有效率,資料再利用授權關係也不明確,使得企業及使用者處在法律不確定之風險中。 全球面對開放資料的進展雖已有初步成效,但成功經驗仍集中在歐美國家,世界上其他國家在開放資料的可用性及近用性,仍與歐美國家有顯著差距,為能促進全球人民生活福祉及活絡商機,各國政府應更積極地執行開放資料政策,並持續改進。