主管英國生殖醫療及胚胎研究事務的人工授精暨胚胎管理局(The Human Fertilisation and Embryology Authority, HFEA)在考量過包括對捐贈婦女的風險以及公眾意見的諮詢後,於今(2007)年2月21日正式對外宣佈一項關於研究用途卵子捐贈的方案,當中提出有力的安全措施確保婦女在捐贈過程中會被正確的告知其風險,並強制地獲得適當的保障。管理局許可婦女捐贈其卵子以供研究之用,包括利他的卵子捐贈,以及接受試管受精醫療後所剩餘的卵子捐贈,而這是英國政府首度許可非接受生殖醫療的婦女可以為提供研究之用進行卵子捐贈。
HEFA強調研究用途卵子捐贈在程序上將有更明確的安全措施。這些安全措施包括清楚的區分研究人員及施行該婦女醫療的人員、關於實際上研究後果的詳細資訊、捐贈將產生的影響,以及要求獲得捐贈婦女在不受研究團隊干擾下的同意。這些安全措施將可有效避免女性捐贈者在被脅迫、被詐欺或是被誤導下做出捐贈卵子的決定。同時,婦女亦不能藉由捐贈卵子而獲得報酬,捐贈者只能要求一筆因捐贈所實際產生費用的補償(250英鎊,約16000元新台幣)。
雖然HEFA認為研究用途捐贈卵子的婦女將得到管制部門嚴密而強力的保障,並且不預見在這個特殊的研究領域會有魯莽的應用,但是部分專家對此並不贊同。位於英國倫敦的國王學院幹細胞研究學者Stephen Minger博士即認為目前使用人類卵子進行的研究工作仍未成熟,這項過早提出的方案會鼓勵婦女去提供她們的卵子來進行研究,而鼓勵這種情況的發生仍是太早了。
本文為「經濟部產業技術司科技專案成果」
公共安全和國土安全局(PSHSB)局長傑米.巴尼特(Jamie Barnett)於2011年3月16日與美國聯邦通訊傳播委員會(Federal Communication Commission)分別先後宣示將更近一步加強國家寬頻計畫(The National Broadband Plan)中寬頻通訊科技在公共安全層面的應用。其具體落實在成立國家級的緊急反應互動中心(The Emergency Response Interoperability Center, ERIC)。該中心利用700 MHz頻段成立全國性的公眾安全無線網絡。 促進公共安全無線寬頻通訊的使用,是公共安全和國土安全局最主要的任務。透過建立互動式公共安全寬頻無線技術的操作框架,使警察、消防及緊急醫療人員可使用到最先進的數位式寬頻通訊技術。配備可在任何時間、地點即時傳輸資訊的薄型智慧電話,替代傳統上所使用的對講機。 其次為發展下一代的911通報網絡。目前大約70%的911通話來自手機,可是大多數的911電話通報中心,並沒有配備可接收目前主流行動通訊使用者所傳送的簡訊、電子郵件、視訊或照片的設備。新一代的查詢通知系統(Notice of Inquiry,NOI)可取代傳統的電話,使公眾透過先進的通訊科技獲得緊急救助。雖然精確定位裝置並不在整個系統之中,但通過行動通訊業者所提供的數據,仍可定位需救助者的方位。 美國將寬頻通訊科技落實在公共安全層面的應用,將有助於其提升整體緊急救護的效率。
歐盟發布綠色政綱產業計畫,提供綠色轉型、國家補助、供應鏈韌性政策歐盟執委會於2023年2月1日公布「綠色政綱產業計畫(Green Deal Industrial Plan)」,該計畫主要包含淨零產品產業建立、國家補助、強化供應鏈、資金等綠色轉型重要政策。「綠色政綱產業計畫」將透過以下四大支柱協助歐盟進行綠色轉型。 (1)建立可預測、簡化且一致的管制環境 歐盟將提出《淨零產業法(Net-Zero Industry Act)》草案簡化管制框架來支持電池、風車、熱汞、太陽能板、電解、碳捕捉等技術;本法案將分析各產業部門後,建立各部門2030年能力目標,確保產業供應鏈不會遭遇瓶頸,並縮短淨零產品工廠選址和中小企業補助核准流程時間,以及增強核准流程的可預測性。另外歐盟並將提出《關鍵原物料法(Critical Raw Material Act)》草案,以管制生產淨零產品的關鍵物資,並透過回收、來源多樣化等方式來降低歐盟對第三方國家的依賴。 (2)更快的提供充足資金 歐盟將放寬各會員國的補助程序,並提高補助金額上限。另外因應中國和美國對淨零產業的補助,本計畫將提高歐盟與歐盟會員國的淨零產業補助額度,讓補助效果能和其他非會員國的補助達同樣程度。 (3)人才訓練與技術強化 歐盟將透過人才訓練、認證和補助來增加綠色及數位轉型技術之勞動力。 (4)為建立韌性供應鏈開放貿易 歐盟將加強與非會員國的自由貿易協定,增加關鍵原物料來源。歐盟也將透過《外國補助規則(Regulation on Foreign Subsidies)》保護歐盟市場的公平性、調查非會員國的傾銷行為、扭曲市場的補助。
美國馬里蘭州法案禁止雇主近用(access)其員工及應徵者之社群網站資訊日前報導指出,在美國有部分的企業在面試時要求應徵者交出其臉書(Facebook)帳號及密碼,以供企業做為評估是否錄取之參考。企業這樣的舉動,遭論者類比為要求應徵者交出自家大門的鑰匙。據悉,企業此一傾向在九一一後有明顯增加之趨勢。 為因應此一趨勢所帶來的隱私疑慮,馬里蘭州在四月初已立法(撰稿時,此法尚待該州州長簽署)禁止雇主要求瀏覽或進入員工與應徵者的臉書或其他社交網站頁面,當然也包括禁止雇主取得員工或應徵者的臉書或社交網站帳號與密碼,或企圖成為員工及應徵者的「朋友」。 馬里蘭州此一立法,除了在保護員工或求職者的隱私之外,也是為了保障言論自由;且此一看似亦在保護應徵者及員工之法律,其實對企業亦有助益:其使原本處於法律灰色地帶的爭議問題明朗化,因而可使企業瞭解應如何因應,而可避免許多不必要的訴訟。 雖然輿論對此立法有許多贊同之聲,但亦不乏反對此一立法者,例如馬里蘭州的許多商業團體即認為瞭解求職者的社交活動,對於剔除不適任的應徵者,有其必要。 馬里蘭州此一立法乃率全美之先,其他各州可能亦陸續會提出類似法案。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現