優質網路社會基本法之推動芻議

刊登期別
第241期,2006年04月11日
 

※ 優質網路社會基本法之推動芻議, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=1883&no=16&tp=1 (最後瀏覽日:2025/07/07)
引註此篇文章
你可能還會想看
美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件

美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。

美國加州機動車輛管理局3月10日發布無人駕駛車輛管理方案

  無人駕駛汽車、電腦駕駛汽車或輪式移動機器人,皆屬自動化載具的一種,具有傳統汽車的運輸能力。而作為自動化載具,自動駕駛汽車不需要人為操作即能感測其環境及導航。目前無人車仍未全面商用化,大多數均為原型機及展示系統,部份可靠技術才下放至商用車型,但有關於自駕車逐漸成為現實,已經引起了很多有關於道德與法律上的討論。   無人駕駛車輛若能夠變得商用化,將可能對整體社會造成破壞性創新的重大影響。然而,在商品化之前的實際道路測試是自動駕駛車輛開發過程非常重要的一環,是否允許自動駕駛車輛實際上路測試為各地交通主管機關之職責。因此,為了保障公共安全與推廣創新,為美國加州機動車輛管理局(Department of Motor vehicles ,下稱加州DMV)便自2015年12月公布無人駕駛車輛規範草案後,歷經2016年9月的修正,於2017年3月10日正式公布無人駕駛車輛管理規範。   美國加州申請自動駕駛車輛上路測試規定係依據加州汽車法規 (California Vehicle Code)38750 中之條款 3.7所訂定,依照加州DMV規畫,在社區內和高速公路上進行測試的自動駕駛車,仍需與傳統汽車一樣,具有方向盤與煞車踏板,而且駕駛座上亦需有人隨時待命應付緊急情況發生。此外,無人駕駛車輛尚必須有人進行遠距監控,並且能在緊急情況發生時安全停靠路邊。   截至2017年3月8日,已有27家公司獲得加州DMV許可,在道路上測試無人駕駛車輛,且這些車輛迄今只造成少數事故。加州DMV公布無人駕駛車輛管理規範後,還將於2017年4月24日舉行公聽會持續蒐集意見,研擬規範修改內容,以符合實際需求。   人駕駛車輛是汽車產業未來發展的趨勢之一,我國於不久的將來亦可能面臨有無人駕駛車輛在國內進行實際道路測試的需求。然而,我國地狹人稠,交通狀況複雜,且國人守法觀念尚有加強空間,確也增添無人駕駛車輛在國內道路測試的挑戰性,以及主管機關於受理測試申請之困難度。因此,加州DMV所公布之無人駕駛車輛管理規範之後續發展,值得吾人持續關注。

紐約市實施《生物辨識隱私法》強化生物特徵保護

  伴隨人工智慧、大數據及雲端運算浪潮,生物辨識技術逐漸成為日常生活的一部分。所謂生物辨識技術,是指利用個人獨特之生物特徵辨識個人的技術。生物特徵包含任何人類生理或行為特徵,只要能夠滿足普遍性、獨特性、不變性及可蒐集性 ,即可作為生物辨識之資訊。由於生物辨識技術能利用生物特徵達到識別與驗證個人身分,因而引發公眾對隱私、資安等議題的關注。   對此,紐約市於2021年7月21日也開始正式施行《生物辨識隱私法》(biometric privacy act) ,期能藉由限制業者利用生物辨識技術以及賦予消費者訴訟權利作法,促成隱私權的週全保障。   該法主要有三大部分: 一、規範生物辨識資訊範圍,包含但不限於(1)視網膜或虹膜掃描(2)指紋或聲紋(3)手或臉部立體掃描或是其他可用於識別之特徵。就前開生物特徵,要求業者應在所有消費者入口處放置清晰顯眼的標誌,搭配簡單易懂方式揭露其蒐集、保留、儲存消費者生物辨識資訊行為。同時,也明文禁止業者將消費者生物辨識資訊以販賣、租賃、交易或是分享方式交換任何相關價值或利益。 二、提供受侵害之消費者訴訟權與法定賠償請求權。但是,就單純未符合揭露要求之業者,該法給予30天的補救期間,要求消費者應於起訴前30天通知業者改善,一經改善即不得再起訴。 三、闡明政府相關部門不適用本法。金融機構、業者與執法部門共享生物辨識資訊,以及單純以影像、圖像蒐集而未分析識別情形則豁免揭露規範。   綜上,紐約市於該法創設訴訟權、法定賠償數額及豁免事由,預料將會是紐約市企業隱私保護政策重要指標,而值得我們繼續關注其發展與影響。

中國大陸財政部及科技部印發《國家重點研發計畫資金管理辦法》

  於2016年12月30日,中國大陸財政部及科技部為規範國家重點研發計畫管理,切實提高資金使用效益聯合發佈了《國家重點研發計畫資金管理辦法》。   該計畫以支援解決重大科技問題為目標,以“優化資源配置、完善管理機制、提高資金效益”為重點,辦法全文共8章57條,根據國家重點研發計畫特點,從預算編制到執行、結題驗收到監督檢查,針對全過程提出了資金管理的要求,明確《辦法》制定的目的和依據、重點研發計畫資金支援方向、管理使用原則和適用範圍,就重點專項概預算管理、專案資金開支範圍、預算編制與審批、預算執行與調劑、財務驗收、監督檢查等具體內容和流程、職責做了明確規定。   與原科技計畫資金管理辦法相比,《辦法》主要有以下變化: 1.建立了適應重點研發計畫管理特點的概預算管理模式。 2.遵循科研活動規律,落實“放、管、服”改革。適應科研活動的不確定性的特點,《辦法》堅持簡政放權,簡化預算編制,下放預算調劑許可權。 3.突出以人為本,注重調動廣大科研人員積極性。   為推動辦法有效落實,財政部及科技部並要求相關部門、專案承擔單位需要共同做好以下工作: 1.相關主管部門應當督促所屬承擔單位加強內控制度和監督制約機制建設、落實重點專項項目資金管理責任。 2.財政部、科技部將組織開展宣傳培訓,指導各有關部門和單位開展學習,全面提高對《辦法》的認識和理解,為政策執行到位提供保障。 3.科技部、財政部將通過專項檢查、專項審計、年度報告分析、舉報核查、績效評價等方式,對專業機構、專案承擔單位貫徹落實《辦法》情況進行監督檢查或抽查。

TOP