無所不在的間諜軟體

刊登期別
2006年04月
 

※ 無所不在的間諜軟體, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=1938&no=64&tp=1 (最後瀏覽日:2026/01/12)
引註此篇文章
你可能還會想看
德國於今年四月提出網路執行法修正案以提升平台使用者友善程度

  德國政府於今(2020)年4月提出「網路執行法」(Network Enforcement Act, NetzDG)之修法草案,將要求社群平台業者提供對使用者更為友善的申訴流程,並建立及維護「反通報程序」機制,讓使用者有機會針對其被平台刪除之貼文或評論提出反對意見,並得重新發佈於社群平台上。   德國於2018年1月起正式施行「網路執行法」,針對在德國境內擁有200萬以上使用者之社群平台業者,課予其限時處理平台上不實及不當言論之義務,並須提交其處理平台上相關言論之報告,若平台業者未能有效執行相關規定者將處以罰鍰。該法施行兩年後引發諸多批評與爭議,雖然並未如社會大眾所憂慮的對於網路言論自由造成重大侵害,亦無證據顯示社群平台業者比施行前刪除了更多的使用者評論;然該法僅要求平台業者刪除不實或不當言論,對於被誤刪之言論,卻未有相關事前預防或事後救濟之措施。為試圖改善原法規執行上之困境和兩難,德國政府遂於今年4月提出修法草案。   此次修法主要重點如下: 強化平台使用者權利 倘使用者於平台發佈之評論遭平台刪除者,使用者未來得要求平台重新檢視此決定,平台須依個案處理並向使用者釋明其決定理由,據此,平台業者須引入反通報程序之機制(counter-notification procedure)。 提升申訴管道之使用者友善性 申訴程序須更為使用者友善,即必須讓平台使用者更容易進入與使用。 簡化法院核發命令程序 未來將同步修訂聯邦電視媒體法案(Telemediengestez),以利法院核發命令,要求平台業者公布數據或揭露犯罪者身分。 加強每半年公布之透明報告資訊 平台業者未來在半年報上須特別提供有關反通報程序之申請與結果,並揭露說明用於查找、刪除平台上不實或不當內容的自動化程序;亦須在報告裡聲明是否授權獨立研究機構以科學目的之匿名訪問權限,了解與研析平台上之不實或不當言論是否有特別針對特定群體。   此修正草案係為德國政府打擊網路上右翼極端主義和仇恨犯罪的政策措施一部份,後續除了須修訂NetzDG以外,亦包含刑法、刑事訴訟法、電信法及聯邦刑事警察局法等四部法規之修訂,相關規範修訂是否有助於刑事起訴進而有效打擊平台上的不當言論,尚有待後續觀察。

歐盟EDPB認為防範Cookie疲勞應確保資訊透明及簡化

歐盟資料保護委員會(European Data Protection Board, EDPB)於2023年12月13日回覆歐盟執行委員會(European Commission, EC)有關Cookie協議原則草案(Cookie Draft Pledge Principles)之諮詢。該草案旨在處理「Cookie疲勞」(Cookie fatigue)所造成的隱私權保護不周全之處。 在電子通訊隱私指令(ePrivacy Directive)以及GDPR規範下,由於現行同意機制複雜,造成用戶對Cookie感到疲勞,進而放棄主張隱私偏好。 為了避免「Cookie疲勞」,EDPB提出以下原則和建議,大致可以分為三點: 一、簡化Cookie不必要的資訊 1.基本運作所需之Cookie(essential cookies)無需用戶同意,故不必呈現於同意選項,以減少用戶需閱讀和理解的資訊。 2.關於接受或拒絕Cookie追蹤的後果,應以簡潔、清楚、易於選擇的方式呈現。 3.一旦用戶拒絕Cookie追蹤,一年內不得再次要求同意。 二、確保資訊透明 1.若網站或應用程式的內容涉及廣告時,應在用戶首次訪問時進行說明。 2.不僅是同意追蹤的Cookie,用於選擇廣告模式的Cookie,仍需單獨同意。 三、維持有效同意 1.應同時顯示「接受」和「拒絕」按鈕,提供用戶拒絕Cookie追蹤的選項。 2.在提供Cookie追蹤選項時,除了接受全部的廣告追蹤或付費服務外,應提供用戶另一種較不侵犯隱私的廣告形式。 3.鼓勵應用程式提前記錄用戶的Cookie偏好,但強調在用戶表達同意時必須謹慎處理,預先勾選的「同意」不構成有效同意。 EC表示,該草案目的在於簡化用戶對Cookie和個人化廣告選擇的管理,雖然為了避免Cookie疲勞而簡化資訊,仍應確保用戶對於同意Cookie追蹤,是自願、具體、知情且明確的同意。將於後續參考EDPB之建議,並與利害關係人進行討論後,制定相關法規。

美國發表網路安全框架

  2014年2月12日,美國發表「網路安全框架(Cybersecurity Framework)」,該框架係由美國政府、企業及民間機構花費一年的時間共同發展而成,其蒐集了全球現有的標準、指引與最佳實務作法,最後由國家標準技術局(National Institute of Standard and Technology, NIST)彙整後所提出。   本框架主要可分成三大部份: 1.框架核心(Framework Core) 框架核心包括辨識(Identify)、保護( Protect)、偵測( Detect)、應變( Respond)、與復原( Recover)等五項功能。這五項功能組成網路安全管理的生命週期,藉由這五項功能的要求項目與參考資訊的搭配運用,可使組織順利進行網路安全管理。 2. 框架實作等級(Framework Implementation Tiers) 共分成局部(Partial)、風險知悉(Risk Informed)、可重複實施(Repeatable)、合適(Adaptive)四個等級。組織可以透過對風險管理流程、整合風險管理計畫以及外部參與等三個面向的觀察,瞭解組織目前的安全防護等級。 3. 框架側寫(Framework Profile) 框架側寫係組織依照本框架實際操作後所產出的結果,可以協助組織依據其企業需求、風險容忍度,決定資源配置的優先順序,進一步調整其網路安全活動。   此一安全框架旨在提供整體規劃藍圖予尚未建立網路安全架構的組織參考,而針對已有建立網路安全架構者,該框架並未意圖取代組織原先的風險管理程序和網路安全計畫,而係希望協助公、私部門改善資通訊科技和工業控制系統風險管理的能力。

美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

TOP