本文為「經濟部產業技術司科技專案成果」
美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
英國OFCOM計畫推出適用於不同內容之分級識別標誌英國財政大臣Gordon Brown在倫敦的一場演講中指出,OFCOM現正研擬制定一套適用於各種不同媒介之內容的分級識別標誌。未來不論電視節目、廣播節目、電影、電腦遊戲或者網站內容都可適用該分級識別系統,以幫助父母為家中的孩童過濾不適當的內容,保護孩童在數位化的時代仍可以遠離不適合的媒體內容。 在該場演講中,Gordon Brown 表示,身處在數位時代,父母越來越難掌握孩童所接觸的內容是否適當,但是在無法扭轉科技的進步前提下,應當善加利用新科技並使父母得以透過各種新科技繼續保有為孩童選擇適當的內容之控制權。 OFCOM的發言人僅透露該套分級識別系統不僅適用於所有種類的媒體內容,而且將以文字方式描述各種內容,例如特定內容之裸露程度為何,以作為視聽大眾決定是否接收該內容前的參考。另外,不同於現行的電影分級制度乃是以年齡作為不同等級內容的分級標準,未來OFCOM所推出的分級識別系統將無關乎年齡。不過OFCOM亦表示該分級識別系統的詳細內容目前尚未決定,仍在討論階段。 除了制定一套適用於所有內容的分級識別系統之外,OFCOM未來亦將透過電視廣告以及要求ISP業者配合向消費者宣導各種過濾軟體,以便消費者得以過濾網路上之色情猥褻或暴力之內容。
世界五大專利局針對新興科技與AI技術組成聯合工作組以提高專利審查效率由世界五大專利局,韓國智慧財產局(KIPO)、美國專利商標局(USPTO)、歐洲專利局(EPO)、中國國家知識產權局(SIPO)與日本專利局(JPO)所組成的IP5組織於2019年6月13日在韓國仁川召開會議。 IP5的五個專利局涵蓋了全球85%的專利申請量,各國代表在會議中同意將持續透過相互調和專利審查程序以達到更有效率的全球專利系統,其中包括:新興科技的專利分類、全球專利檔案(Global Dossier)服務的持續改善、加強五大專利局間的工作分享以及調和專利審查實務與程序。在專利審查實務與程序的調和上,IP5同意針對以下項目進行調和:發明專利的統一性、引證的先前技術、專利說明書是否充分揭露的判斷,這些項目的調和目的在於減輕申請人的負擔並增加專利審查工作效率。 會議中五大專利局也同意成立新興科技與AI技術的聯合工作組以因應全球技術的發展,透過聯合工作組協調對於AI專利的審查標準,以及如何將AI技術運用於專利管理事務中。 預期透過IP5的五大專利局相互調和,將可使專利審查更有效率、審查標準趨於一致且專利資訊和數據可更容易獲取,有助於企業組織在國外的專利申請布局。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
情理法難兼顧,人工生殖法再掀波瀾陸軍上尉連長孫吉祥殉職後,未婚妻李幸育終於順利取精,不過能否接受人工受孕則仍有變數。由於 目前人工生殖法草案尚未過關,法律上尚無明確規範,且由於此種案件勢將引發若干後續問題,情理法難以兼顧,故衛生署國民健康局長吳浚明表示,目前擬採取專案審查方式,於週一﹙ 9月13日﹚邀集律師、醫學倫理、婦女團體、不孕症代表等專家,共同討論是否同意李幸育進行人工受孕。 在正式同意人工受孕之前,如果有醫師私下協助進行,衛生署將得以「其醫療行為違反醫學倫理」為由﹙醫師法第二十五條﹚,依同法二十五條之一予以懲戒。至於衛生署長侯勝茂先前表示,要檢討人工生殖法草案之具體內容,放寬「不孕夫妻而且雙方健在」的限制,吳浚明則坦承,此項指示的難度很高,因為目前連草案都還在等待立法院審查,如果等草案過了再行修正,退案修正一來一往間,將耗費相當時日,更何況死後取精可否進行人工生殖之情形更屬複雜,預期難在短期之間獲得定論。