英國可算是對人類胚胎研究最積極的國家之一,目前其胚胎相關研究係根據「人類受精與胚胎學法」(Human Fertilisation and Embryology Act 1990,HF&E Act)及「人類受精與胚胎學規則」(Human Fertilisation and Embryology (Research Purposes) Regulations 2001,Research Purposes Regulations)之規定,並授權「人類受精與胚胎學管理局」(Human Fertilisation and Embryology Authority,HFEA)加以管理。
然面對胚胎研究日益多樣化,英國健康部於今(2007)年5月正式提出「人類組織與胚胎法草案」(Human Tissues and Embryos (Draft)Bill,以下簡稱草案),期能加強現有管理體系並促進相關技術之發展,而草案特別針對體外受精(in vitro fertilization)及胚胎研究之相關規定,作一徹底檢視及翻修。
進一步觀察,胚胎儲存、胚胎篩選、精卵捐贈及主管機關均屬草案規定範圍,另近來於英國國內討論熱烈的人類動物混合胚胎議題,亦於草案中有所規定,草案准許三種類型之人類動物混合胚胎得以被製造,分別是:將動物細胞注入至人類胚胎中、將動物DNA注入至人類胚胎中及將人類細胞核植入動物卵子中等。至於人類精卵與動物精卵之結合,則是被禁止之行為。
草案後續將送交國會專門委員會審查,但由於草案涉及極為爭議的人類動物混合胚胎議題,社會輿論的壓力及保守派議員會產生何種影響,值得持續關注。
本文為「經濟部產業技術司科技專案成果」
歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
歐盟智慧財產局出版《防偽技術指南》,協助企業及早防免智財侵權風險歐盟智慧財產局(European Union Intellectual Property Office)之智庫「歐盟智財侵權觀察平台」(the European Observatory)於今(2021)年2月出版《防偽技術指南》(Anti-Counterfeiting Technology Guide,下稱本指南),本指南全面介紹目前市面上防偽技術的內容,技術區分成電子型、標記型、化學型、物理型、機械及數位媒體型等五大防偽技術類別,供所有有興趣了解或欲執行防偽技術的各規模、各領域企業們參考。 仿冒為全球性問題,幾乎威脅到了各領域行業的營運與生存,而全球仿冒品數量在互聯網時代之下,以每年增長15%的驚人速度上升中,已嚴重侵害了企業的品牌商譽與智慧財產權。企業雖懂得以註冊智財權的方式自我保護,但仿冒問題對企業帶來的攻擊性日益增加、防偽技術又多如牛毛且複雜,本指南彙整之資訊,尚補充了關於ISO標準的相關技術資訊,如《 ISO 22383:2020 》(產品與文件之安全性、彈性、真實性與完整性-重要產品認證方案之選擇與性能評估標準)。這些資訊可以跟防偽技術一併使用,精進企業整體防偽策略。 此外,本指南對於彙整出的每項防偽技術或ISO的相關技術標準,都予以清楚介紹,並說明技術主要特性、優缺點、用途、實施條件以及相關成本,企業可透過本指南比較各式防偽技術,從而選定最適合其業務性質的防偽技術,及早防範仿冒風險,以保護企業之業務營運與品牌發展。
能源稅課徵 經濟部爭取三年緩衝財政部日前對外公布「能源稅條例」修正草案,由於課徵能源稅對產業的衝擊層面甚大,行政院最近邀集財經等部會及環保署協商「能源稅條例」草案。 經濟部認為能源稅開徵應在能源價格合理化後再實施,且需採漸進式方式開徵,並主張應仿歐盟做法,給予業者至少二至三年的緩衝期,即 98 年之後再開徵。同時經濟部也建議參照歐美國家給予差別稅率,燃料油及煤炭能源稅,應給予工業部門較低稅率或免稅,以降低對產業的衝擊,否則製造業生產流程使用到煤及天然氣的業者都將受衝擊。另外,經濟部也應主張若要課徵能源稅,應同步取消平板玻璃、橡膠輪胎、電器及飲料等四類貨物稅及汽燃費,並取消空汙費與土汙費,以避免雙重課稅。 能源稅的直接用意應是藉由租稅手段提高能源使用效益,間接才是充實國庫。我國許多能源相對便宜,以致部分中小企業在欠缺嚴謹工程管理的情況下,石油、水電等資源的使用或有浪費情形,因此祭出能源稅,重點應擺在提高能源使用的邊際效益,同時,政府亦應提出有效配套,以兼顧產業的國際競爭力。
韓國未來創造科學部發表智慧資訊社會中長期計畫因應第四次產業革命2017年7月20日,韓國未來創造科學部發表智慧資訊社會中長期計畫(Mid- to Long-Term Master Plan in Preparation for the Intelligent Information Society)。為了因應第四次產業革命,韓國將面臨關鍵轉型,目標是成為智慧資訊社會,將人工智慧、物聯網(IoT)、雲端計算、大數據分析和移動平台,融入社會的各個面向。此外依據分析,至2030年智慧資訊社會的經濟價值估計將達到460萬億韓元,屆時絕大多數簡單重複的任務將自動化,進而消除大量的工作機會。但於此同時,也將在相關發展中的產業,創造新興就業空缺,如軟體工程和數據分析等。 韓國採取的相關措施,包括積極支持具前景的科技技術,培養創意人才、加強公私合作夥伴關係,實現韓國經濟、社會和其他有關制度所需的巨大轉型與變革。目標是在第四次產業革命中取得領導地位,為此制定智慧資訊社會中長期計畫,分為以下三大方向。 一、建構智慧IT的世界級基礎設施 發展並強化數據及網路的基礎設施,使其在全球市場上居於領導地位。 二、促進智慧IT在各產業的應用 將智慧IT技術活用於公共服務及私人部門,提高生產力、效率與國家競爭力。 三、積極改進並加強社會支援系統 透過教育改革、就業及福利服務等政策,包括培養創新人才,為社會結構改變及可能的負面衝擊作出準備,加強福利政策與社會安全網絡,以確保所有公民都能夠享受到智慧資訊社會的利益。