Apple獲得針對可攜式電子裝置之防竊系統的專利

  Apple Inc.成功取得一個防竊安全系統的專利權,該系統能簡單地藉由偵測外界環境而防止筆記型電腦、電話以及其他可攜式電子裝置遭竊。

 

  於原始申請案中,申請人提到了許多竊案皆提供了某些非偶然的移動線索,例如快速且持續的移動。因此,藉由分析該裝置於一段期間內的移動,該防竊系統應可辨別出竊盜或合法使用者。因此,當使用者暫時離開時,他們能放心地將可攜式電子裝置留下,而不需要加裝纜線鎖或其它物理性安全裝置。

 

  根據該專利,此防竊系統包含加速規(accelerometer)以及相對應的軟體。加速規可在某些位置或震動情況下自動傳送一訊號至該裝置核心的硬體,致使其觸發聲音或影像警報。此外,該裝置也能完全被鎖住,並且需要一組密碼使其回復到正常使用狀態。

 

  雖然Apple很小心地避免在說明前述機制時指明特定的應用硬體,但藉由該專利說明書的描述,可以很清楚的了解Apple的構想是將該防竊系統安裝在iPod上。當然,手機以及筆記型電腦也是安裝該防竊系統的顯著標的。

相關連結
※ Apple獲得針對可攜式電子裝置之防竊系統的專利, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2250&no=67&tp=1 (最後瀏覽日:2025/12/03)
引註此篇文章
你可能還會想看
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

英國資訊委員辦公室(ICO)發布指引以因應歐盟一般資料保護規則(GDPR)正式施行

  為因應歐盟一般資料保護規則(General Data Protection Regulation,簡稱歐盟GDPR)於2018年5月正式施行,英國資訊委員辦公室(Information Commissioner’s Office, 簡稱ICO)於2017年11月21日發布一般資料保護規則指引(guide to general data protection regulation)(簡稱一般資料保護規則指引)。   ICO所發布的一般資料保護規則指引,係用於解釋歐盟GDPR的各條規定,協助企業符合歐盟GDPR的各項要求,適用於企業中擔負資料保護義務責任者。ICO說明本指引文件致力於擴展與歐盟GDPR、ICO所制定公告之其他指引文件、歐盟第29條工作小組制定公告之相關指導文件的聯結。歐盟第29條工作小組係由歐盟各會員國的資料保護機構代表組成,而ICO即為英國派任於該工作小組之資料保護機構代表。   ICO發布的一般資料保護規則指引,內容簡述如下:本指引文件係在建構歐盟GDPR法規的架構,將反映歐盟GDPR未來的導引與如何呈現,本指引內容有歐盟GDPR的重要定義(如歐盟GDPR適用對象、歐盟GDPR所欲保謢之資料種類)、歐盟GDPR原則、個人資料處理、當事人同意、當事人權利介紹、資料保護、資料洩漏處理、未成年人保護等議題之參考要點;並針對部分議題,設計有簡易清單,供參閱者勾選確認。   英國ICO除採取對外發布一般資料保護規則指引外,另有制定數個線上工具,協助企業依其身分別(如資料管理者或資料處理者),選擇線上工具進行自我檢視是否符合歐盟GDPR要求,期以協助英國業者為今(2018)年5月GDPR正式施行,能作更充分的準備。

德國提出「新冠肺炎及新型冠狀病毒預防接種法」草案,以利疫苗分配之政策規劃及法制基礎

  德國聯邦健康部(Bundesministerium für Gesundheit, BMG)於2020年12月15日提出「新冠肺炎及新型冠狀病毒預防接種法」(Gesetzes zur Priorisierung bei der Schutzimpfung gegen das Corona-virus SARS-CoV-2, Coronavirus-Impfgesetz)草案,現進入聯邦參議院審議階段。該草案之立法目的在於,確認新冠肺炎及新型冠狀病毒(Coronavirus SARS-CoV-2)疫苗分配的公平性,並藉此降低嚴重疾病與死亡人數。   原則上凡屬於法定健康保險的被保險人,或於德意志聯邦共和國內有住所或長期居留者,得依據新冠肺炎及新型冠狀病毒預防接種法規定,具有接種新冠肺炎及新型冠狀病毒疫苗之權利。然而,由於疫苗的分配涉及基本法第2條第2項第1句生命及身體安全的基本權利(Grundrecht auf Leben und körperliche Unversehrtheit),以及衡酌疫苗資源的有限性問題,該法第3條依據風險群體(Risikogruppen)及適應症群體(Indikationsgruppen)共區分六級的接種優先順序,如違反接種優先順序者,將可能面臨最高三萬元的罰鍰,意圖營利者則將可能面臨一年至五年的有期徒刑。

美國營業秘密之獨立經濟價值的認定趨勢變化

2023年6月來自美國法院的兩份營業秘密意見,強調了獨立經濟價值的重要性,並打破過往學者認為該要件沒有判斷實益的擔憂。所謂的獨立經濟價值,是指任何資訊若要成為營業秘密,所需具備源自其保密狀態的經濟價值。由於兩份意見都不允許原告透過薄弱之推論與假設,來證明其營業秘密具有獨立之經濟價值,顯示出法院對獨立經濟價值之認定趨勢的變化。 其中一份意見來自美國第四巡迴上訴法院,該法院認為原告未能提供充分的證據證明其營業秘密之價值,並駁回原告以該公司被收購之價格或授權其專有資料庫VulnDB所得收入,作為其75項涉案營業秘密經濟價值的論點。美國第四巡迴上訴法院強調,原告不僅需證明所主張之營業秘密具有經濟價值,尚需證明該經濟價值源自所主張之營業秘密的保密狀態。 另一份意見來自美國俄亥俄州北區地方法院,該法院駁回了原告透過其執行長的宣誓書來證明所主張之營業秘密具有獨立經濟價值的作法。儘管該宣誓書討論了法院經常認定為營業秘密的資訊,比如交易的形式、未經審計的財務報表等,但美國俄亥俄州北區地方法院仍拒絕主觀證詞,要求原告提供所主張之營業秘密具有獨立經濟價值的客觀指標或理由。 企業該如何證明其營業秘密具有獨立之經濟價值? 企業可透過下列方式來證明其營業秘密具有獨立之經濟價值,包括: 1.開發成本:開發營業秘密的時間與材料成本,但過去的研發成本未必等於現在的經濟價值; 2.授權、租賃費:他人付費使用其營業秘密的事實; 3.內部通訊紀錄:他人承認該營業秘密所帶來的好處或前僱員、承包商與其競爭對手分享營業秘密的事實; 4.展現出優勢:透過營業秘密資訊獲得一份有價值的合約或滿足某些標準、條件之要求; 5.降低成本/提高效率:透過營業秘密減少原物料之投入及所需時間或提高生產之效率。 隨著美國法院對獨立經濟價值之認定趨勢的變化,營業秘密案件之原告所負的舉證責任將逐漸提高。據此,當企業欲提出不當使用營業秘密之損害賠償時,應盡早開始收集相關證據,以滿足法院對於營業秘密之獨立經濟價值的認定標準。 本文同步刊登於TIPS網站(https://www.tips.org.tw)。

TOP