歐盟希望類比電視頻譜供給WiMax之用

  歐盟資訊社會和媒體委員會委員Viviane Reding女士,2007年6月1號在希臘一場和寬頻議題相關的演講說中建議,當歐洲電視類比頻段逐漸淘汰時,這些超高頻段頻譜(Ultra High Frequency)應該分派給寬頻網路技術(例如:WiMax)之用。

 

  WiMax是Worldwide Interoperability for Microwave Access的縮寫,一般中譯為「全球互通微波存取」,是一種新興的無線通訊技術,其傳輸速度最高可達70Mbps,傳輸範圍最廣可達30英哩,對個人、家庭與企業的行動化將有很大助益。由於WiMax目前頻譜規劃限制在5.7FHz和3.4GHz區段裡,如果安排在500到800MHz超高頻段上,那WiMAX基地台涵蓋的範圍將提高,並能大大地減低成本。

 

  Viviane Reding女士在該演說中提到,「無線寬頻技術的出現,是克服偏遠或農村地區數位落差現象的重要要素,且是處理數位落差的唯一世代機會。因此,需要一個頻譜的政策框架,釋放這種潛力。」她同時也提到,如果期望以低價擁有更大幅度的無線寬頻速度,則需要釋出具高傳輸性的頻譜。簡言之,決策者應仔細探究從類比轉換成數位化後所產生的數位落差問題,同時思考有無可能在UHF開拓出空間給無線寬頻。

相關連結
※ 歐盟希望類比電視頻譜供給WiMax之用, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2275&no=64&tp=1 (最後瀏覽日:2025/04/03)
引註此篇文章
你可能還會想看
美國聯邦航空總署准許美國有線電視新聞網在人群中使用小型無人機進行拍攝

  美國有線電視新聞網(Cable News Network, CNN)通過美國聯邦航空總署(Federal Aviation Administration, FAA)之審查,允許使用小型無人機(small Unmanned Aerial Vehicle, sUAS)直接穿越人群中(flying directly over a person or people)進行拍攝採訪,為美國目前第一件允許在商業目的中使用小型無人機自由穿梭人群之豁免核准案。   美國於2016年8月通過聯邦法規第107篇(14 CFR Part 107)又稱小型無人機規則(small UAS rule),規定關於小型無人機之操作規範。其中該規則列舉7種操作禁止事項,須事前經由美國聯邦航空總署豁免方得進行操作(又稱Part 107 Waiver),分別為:1.夜間飛行、2.直接穿越人群飛行、3.經由行進車輛或飛機進行飛行、4.一人操作多架無人機、5.視距外飛行、6.飛行超過400英呎、7.飛行區域近機場或禁航區附近。   CNN本次豁免項目即第107.39條的「直接穿越人群飛行」之規定,該規定除飛越對象為操作者本身,或僅飛越在建築物、車輛上並不受禁止規範外,只要無人機穿越人群皆須經美國聯邦航空總署審查同意方得操作,否則將面臨重罰。此一豁免通過後,改變以往記者與攝影師合作之拍攝手法,改由受訪者直接接受無人機採訪,除節省人力資源外也能突破地勢之空間限制,對於商業營運模式將有重大變革。    然而由於直接穿越人群飛行之風險性極高,因此在本次豁免條件中亦有嚴格限制,除只能使用申請時之特定無人機外,並應該嚴格遵守製造商之使用說明。另外,不得擅自改變無人機之設計或在未經允許下額外加裝配備。同時飛行高度亦不得高於海平面150英呎,並須定期檢測維修。最後每次操作皆須詳細記錄並保存,包含機械故障時須立即回報。

歐美擴大永續報告書的揭露範圍,企業可透過歷程管理增進資料透明度

根據美國瑞生國際律師事務所(Latham & Watkins)於2024年1月發布的ESG年度報告指出,隨漂綠議題延燒,ESG報告不受信任為一課題,因此國際逐步擴大ESG監管,多國透過立法強制企業應揭露永續報告書或供應鏈資訊,比如:歐盟於2023年1月生效之《企業永續報告指令》(Corporate Sustainability Reporting Directive, CSRD),要求企業揭露的永續資訊需增加供應鏈資訊的透明度;美國證券交易委員會(SEC)於2024年3月6日通過規則,要求上市公司及公開發行公司揭露碳排放報告等氣候風險相關資訊。 為因應ESG帶來的挑戰,報告建議企業應採取流程化管理方式,了解產品進出口涉及的其他國家對ESG揭露資訊的要求,加以規劃並建置資料控管規範、進行人員教育訓練以及確認ESG相關資料的所有權歸屬。 由於碳排放量的計算沒有一致標準,且難以確保供應鏈上下游所提供的碳排資訊真實、未經竄改等問題,外界不容易信任企業永續發展書提倡的供應鏈減碳策略。國內企業可參考資策會科法所創意智財中心發布的《重要數位資料治理暨管理制度規範(EDGS)》,透過流程化管理,從制度規劃及留存供應鏈二氧化碳排放量或二氧化碳減量等產品相關資料歷程來增進ESG資料透明度。 本文同步刊登於TIPS網(https://www.tips.org.tw)

因應巨量資料(Big Data)與開放資料(Open Data)的發展與科技應用,美國國會提出「資料仲介商有責與透明法草案」(Data Broker Accountability and Transparency Act)

  美國國會議員Markey與Rockefeller於2014年2月提出S. 2025:「資料仲介商有責與透明法草案」(Data Broker Accountability and Transparency Act),以促進對於消費者保護,與資料仲介產業發展間的平衡。該草案預將授權「美國聯邦貿易委員會」與各州據以監督與執行。   該草案對「資料仲介商」(以下簡稱Data Broker)加以定義為係以銷售、提供第三方近用為目的,而蒐集、組合或維護非其客戶或員工之個人相關資料的商業實體;更進一步的禁止Data Broker以假造、虛構、詐欺性的陳述或聲明的方式(包括提供明知或應知悉為偽造、假造、虛構、或詐欺性陳述或聲明的文件予以他人),自資料當事人取得或使其揭露個人相關資料。   該草案亦要求Data Broker建置及提供相關程序、方式與管道,以供資料當事人進行下列事項: 1.檢視與確認其個人相關資料(除非為辨識個人為目的的姓名或住址)正確性(但有其他排除規定)。 2.更正「公共紀錄資訊」(Public Record Information)與「非公共資訊」(Non-public Information) 3.表達其個人相關資料被使用的時機與偏好。例如在符合一定條件下,資料當事人得以「選擇退出」(Opt Out)其資料被Data Broker蒐集或以行銷為目的而販售。   於此同時,加州參議院亦已於2014年5月通過S.B. 1348:Data Brokers的草案,該草案要求資料當事人擁有檢視Data Broker所持有的資料,並得要求其於刪除提出後10天內永久刪除;當資料一經刪除,該Data Broker不得再行轉發或是將其資料販售給第三人。加州參議院並提案,該法案通過後將涵蓋適用至2015年1月1日所蒐集的資料,且個人於Data Broker每次違反時得提出$1,000美元的損害賠償訴訟(律師費外加)。雖然該草案受到隱私權保護團體的支持,卻受到加州商會(California Chamber of Commerce)與直銷聯盟(Direct Marketing Association)的反對。加州在Data Broker的立法規範上是否能超前聯邦的進度,讓我們拭目以待吧。

經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

TOP