歐盟希望類比電視頻譜供給WiMax之用

  歐盟資訊社會和媒體委員會委員Viviane Reding女士,2007年6月1號在希臘一場和寬頻議題相關的演講說中建議,當歐洲電視類比頻段逐漸淘汰時,這些超高頻段頻譜(Ultra High Frequency)應該分派給寬頻網路技術(例如:WiMax)之用。

 

  WiMax是Worldwide Interoperability for Microwave Access的縮寫,一般中譯為「全球互通微波存取」,是一種新興的無線通訊技術,其傳輸速度最高可達70Mbps,傳輸範圍最廣可達30英哩,對個人、家庭與企業的行動化將有很大助益。由於WiMax目前頻譜規劃限制在5.7FHz和3.4GHz區段裡,如果安排在500到800MHz超高頻段上,那WiMAX基地台涵蓋的範圍將提高,並能大大地減低成本。

 

  Viviane Reding女士在該演說中提到,「無線寬頻技術的出現,是克服偏遠或農村地區數位落差現象的重要要素,且是處理數位落差的唯一世代機會。因此,需要一個頻譜的政策框架,釋放這種潛力。」她同時也提到,如果期望以低價擁有更大幅度的無線寬頻速度,則需要釋出具高傳輸性的頻譜。簡言之,決策者應仔細探究從類比轉換成數位化後所產生的數位落差問題,同時思考有無可能在UHF開拓出空間給無線寬頻。

相關連結
※ 歐盟希望類比電視頻譜供給WiMax之用, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2275&no=64&tp=1 (最後瀏覽日:2024/11/21)
引註此篇文章
你可能還會想看
2015年世界智慧財產報告:突破創新與經濟成長

  在一片低迷的全球經濟成長中,2015年11月11日世界智慧財產權組織(WIPO),公布了最新的「世界智慧財產報告:突破創新與經濟成長( World Intellectual Property Report: Breakthrough Innovation and Economic Growth)」,探討知識產權的角色與創新及經濟成長之關連,並鎖定在突破性創新之影響。該報告除討論具代表性歷史創新技術,另也探討當今具有潛在突破性發展之創新技術,同時敦促各國政府及企業,應增加此三領域創新技術相關之投資。   在過去300年來的創新技術發展,已經觸及人類活動的各個層面,並改變了世界的經濟結構。依據2015年WIPO報告,顯示出三領域歷史創新技術如何觸發當時新的企業活動:即飛機、抗生素和半導體。該報告考量到創新驅動成長及未來展望,另探究了三領域具有潛在突破性發展之當今技術:即3D列印、奈米和機器人技術。調查報告也顯示,日本和美國正帶領著一小群國家,推動此三領域創新技術進行突破研究,正因此三領域前瞻技術,掌握著推動未來經濟增長之潛力。   朝向工業化發展的新興中等收入國家中國大陸,自2005年以來在3D列印和機器人領域的專利申請量占全球四分之一以上,為全球國家中比率最高;在奈米技術方面,中國大陸專利申請人占全球近15%,是第3大申請國,但與其他資深創新國家不同的是,中國大陸的大學和公立研究機構申請案所占比例相當高。   WIPO報告強調,創新生態系統的成功要素有三:政府資助科學技術研究,並協助具前景技術從實驗室走到商品化階段;透過充滿活力的金融市場和健全的法規,以及鼓勵企業創新來加強市場競爭力;促進公、私部門創新單位的連結溝通流暢。   該報告亦說明大學和公立研究機構與創新如何日形密切,和傳統飛機、抗生素和半導體領域相較,學研機構在3D列印、奈米技術和機器人領域的專利申請所占比例較高,尤其是在奈米技術領域,全球的學術機構申請人約占四分之一。另外著作權在技術創新也變得更加常見且緊密相關,包括電腦軟體納入著作權保護標的,及3D物品設計和電腦IC晶片設計等的任何形式數位表達之保護。   WIPO「世界智慧財產報告」每兩年發行一次,每期的重點放在不同的IP領域新趨勢,先前的報告已探討「品牌在全球市場的角色(the role that brands play in a global marketplace)」及「不斷變化的創新(the changing face of innovatio)」。

何謂「美國創新戰略」?

  美國創新戰略(Strategy for American Innovation)係美國經濟委員會(National Economic Council,NEC)及白宮科技政策辦公室(Office of Science and Technology Policy,OSTP)於2009年9月所提出的重要科研指導政策,為美國近年調整科研發展之依據,曾分別於2011年2月及2015年10月配合時事增補最新內容。該政策主要在說明美國政府、國民與企業應如何共同努力進行全面性的創新,強化長期的經濟成長;在此基礎上發展對於美國產業發展具有優先重要性的技術領域。最初提出時內容包括:1.美國創新基石之投資;2.促進以市場為導向的創新;3.以及針對國家需求的優先順位催化重要的科技突破。   白宮在2011年4月進一步提出一些重要的創新促進新機制,包括改革專利制度、重視數位教育以及基礎科學教育的強化、加速發展再生能源、提振美國創業精神(entrepreneurship)等。隨著政策的逐步推行,2015年10月公布之最新版本,內容包括:1.投資創新基石;2.刺激私部門進行創新活動,並研議租稅優惠永久制度化;3.營造一個創新者國家,改善創業環境,協助更多創新者成功創業。並且在政府機關間強調創新,另著重於從私部門的根本改變其活動和行為模式,提升創新層次才能確實將創新成果在產業間創造出來。

歐盟《非歐盟國家智財權保護與執法成效報告》

  歐盟執委會於2020年1月8日發布《非歐盟國家智財權保護與執法成效報告》(Report on the protection and enforcement of intellectual property rights in third countries)。該報告自2006年起,每兩年出版一次,主要目的為確定特定非歐盟國家中智財權之保護與執法狀況,並列出每兩年的「優先關注國」(priority countries)清單。報告中亦說明,所謂「優先關注國」是對歐盟智財利益造成最大侵害的國家,而非指全球中智財保護狀況最有問題的國家。   本次報告臚列的國家中,中國為最需關注的第一級國家;第二級為印度、印尼、俄羅斯等;第三級則是阿根廷、巴西、馬來西亞、泰國、沙烏地阿拉伯等國。報告提到中國是歐盟境內仿冒品與盜版貨物的主要來源。在歐盟海關扣押的仿冒品與盜版貨物中,有百分之八十以上來自中國和香港。第二類優先國家,其智財保護與執法存在系統性問題,且問題解決上進度緩慢。而第三類優先國家智財領域表現上也有類似問題,僅在嚴重性和數量低於第二級優先國家。其中,沙烏地阿拉伯為今年新增為優先關注國家,研究報告指出該國常被作為中轉國家,傳輸歐盟境內仿冒與盜版貨物。   報告中亦提到上述國家共同問題,包含: 強制性技術轉讓策略(特別是中國)不利於外國產業(尤其是高科技產業)投資,使外國產業失去競爭優勢; 海關執法情形不一,往往沒有依職權採取人身拘提、扣押、銷燬仿冒及盜版貨物,或是未對運輸中的盜版貨品依法採取行動; 仿冒和盜版商品通常不會被執法部門直接銷燬,甚至會回到市場; 智財侵權罰則上,許多國家的懲罰過輕,無法造成威懾作用。 因缺乏執法政治意願和資源,使國家智財權執法情況薄弱,也導致技術基礎設施、人力資源、專業能力,甚或司法、行政以及一般公眾對智財權價值認識不足。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP