美國專利商標局(United States Patent and Trademark Office, USPTO)最近宣布將運用同儕檢視的概念,啟動名為”Peer Review Pilot”的軟體專利檢視先導計畫(以下簡稱PRP),該計畫並將與紐約大學進行中的專利共同檢視計畫(Community Patent Review Project (CPRP))合作,以確保軟體專利的品質。
CPRP乃是由紐約大學法學院設置及管理的網站,該網站允許技術專家進一步予以檢視並提供相關資訊的機會,希望專利申請案在經過同儕檢視後,才進一步送交官方審查,藉此縮減審查程序的時間;而UPSTO的PRP也有類似的運作概念,PRP計畫在USPTO開始進行官方的專利審查工作之前,提供ICT領域的技術專家一個針對專利申請書專的權利主張,提出技術之參考註解(annotated technical references)的機會。
USPTO指出,專利審查官員唯有在資訊充分的前提下,才能做出正確的決定,考量專利審查官員必須在有限的時間內找出正確的訊息以對個別案件做出決定,而軟體相關技術的來源碼又不容易取得,也沒有完整的紀錄可供查詢,因此USPTO大膽採用同儕檢視的方法,期能藉此改善軟體專利的審查時間與品質。
本文為「經濟部產業技術司科技專案成果」
美國加州州長於2021年10月6日正式簽署《基因資訊隱私法》(Genetic Information Privacy Act, GIPA), 將於2022 年 1 月 1 日生效。GIPA在聯邦法和州隱私法的框架下,補充建立基因資訊保護機制,規範無醫護人員參與的「直接面對消費者基因檢測公司」(Direct-to-consumer genetic testing company,下稱DTC公司)之個資保護義務,並要求DTC公司執行下列消費者基因資料(去識別化資料除外)之蒐集、利用、揭露,須獲消費者明示同意: 利用DTC公司產品或服務所蒐集之基因資料,應取得同意。其同意書須載明近用對象、共享方式,以及具體利用目的。 初步測試完成後儲存生物樣本,應取得同意。 目的外利用該基因資料或樣本,應取得同意。 向服務提供商外之第三方傳輸或揭露該基因資訊或樣本,應取得同意。其同意書須載明該第三方之名稱。 分析行銷或第三方依消費紀錄所進行之促銷,應取得同意。 上開同意之取得,不可使用黑暗模式(dark patterns)誤導消費者,並必須針對資料或樣本採取合理安全維護措施。 GIPA也新增消費者權利,保障消費者近用權和刪除權,DTC公司須制定政策,使消費者易於近用基因資料、刪除帳戶與基因資料、銷毀生物樣本等,並須於消費者依法撤回同意後30日內銷毀之,不得因行使權利而有差別待遇。DTC公司若GIPA違反規定,消費者擁有私人訴訟權。
英國公布「智慧聯網挑戰與機會」政策報告及制訂「智慧聯網科際研究路徑圖」對於智慧聯網(IoT)推動政策,英國主要係以科技策略委員會(Technology & Strategy Board)下設智慧聯網特別關注研究小組(IoT Special Interest Group, IoT SIG)為平台,討論智慧聯網(IoT)相關資訊及規劃推動政策。英國智慧聯網特別關注研究小組2013年5月公布「智慧聯網的挑戰與機會」(IoT Challenges and Opportunities - Final Report)報告,對於智慧聯網(IoT)服務的創新發展提出建議,包括應推動:(1)建立操作互通性(interoperability)的框架(2)以人為本的設計(People-centred design)(3)創造強健的智慧聯網(IoT)平台(4)頻譜使用模式的無線電技術等相關政策。 再者,英國智慧聯網特別關注研究小組在2月15日也發表「智慧聯網科際研究路徑圖」(A Roadmap for Interdisciplinary Research on the Internet of Things) 最後報告,內容包含四個子報告,分別對科技、文化創意及設計、經濟及商業、社會科學討論智慧聯網(IoT)未來研究的方向。在「社會、法律及道德子報告」(A Roadmap for Interdisciplinary Research on the Internet of Things: Social Science)中提及應注意的研究問題,包括:隱私及資料保護、自主選擇性(choice)、控制(control)、智慧型個人隨身裝置的社會議題、安全(security) 、所有權及智慧財產權、公眾安全及保護、資料保留(data retention)、行動的停止、過時資料的處理、以及巨量資料、納入公眾意見、服務品質等等。 並且,英國「社會、法律及道德子報告」中透過情境分析的方式,試圖將所提及之相關社會、法制及道德議題盧列出來,希望能在此基礎下進行更系統性的研究探討,以更廣泛含攝模式,嘗試從社會、法律及道德各層面,探究智慧聯網(IoT)相關重要議題。
美國聯邦交通部公布自駕車4.0政策文件美國交通部(Department of Transportation)於2020年1月8日公布「確保美國於自動駕駛技術之領導地位:自駕車4.0」(Ensuring American Leadership in Automated Vehicle Technologies : Automated Vehicles 4.0)政策文件,提出三個核心原則及相對應的策略規劃: 一、 使用者與社會的保護: 整合自動駕駛技術之安全性,包括防堵對自駕車性能之詐欺或誤導行為,以強化民眾對此新興技術的信心。 與自駕車技術開發商、製造商及服務商合作,預防與降低惡意使用自動駕駛技術所造成的公共安全威脅及犯罪,如制定網路安全標準、於運輸系統之資料傳輸媒介及資料庫設計能夠防止、反應、偵測潛在或已知危險之可行作法。 要求製造商於設計和結合相關自動駕駛技術時,採取具整體風險考量之方式,以確保資料安全性與公眾隱私保護,特別是針對駕駛者與乘客,以及第三人資料存取、分享及使用。 支援與協助自動駕駛技術研發,並透過提供多樣化商品和服務,滿足消費者需求並增加自駕車的普及性,使國人能使用安全且能負擔的移動載具。 二、 保障市場效率: 採取靈活及技術中立政策,由大眾選擇具經濟及有效率的運輸方案。 透過相關智慧財產法規,保護相關技術,並持續推動經濟增長之政策及提升國內技術創新競爭力。 收集與研擬國內外法規資料,並使自動駕駛技術產品及服務能夠與國際標準接軌。 三、 促進與協調各方合作: 積極協調全國自動駕駛技術研究、法規和政策,以利有效運用各機構資源。 參考國際間自動駕駛技術標準及監理法規,並與各州政府及業界共同研擬與整合自動駕駛技術至現行運輸系統標準與相關法規。
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。