淺談日本地方政府立法規範基改作物種植之趨勢

刊登期別
第19卷,第6期,2007年06月
 

本文為「經濟部產業技術司科技專案成果」

※ 淺談日本地方政府立法規範基改作物種植之趨勢, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2294&no=64&tp=1 (最後瀏覽日:2025/08/18)
引註此篇文章
你可能還會想看
德國法蘭克福高等法院判定ISP業者毋須揭露線上音樂下載使用者個人資料

  法蘭克福地區高等法院2005年1月25日駁回下級法院判決,後者判定一在家中經營非法音樂下載服務之網路使用者,其個人資料應被予以揭露。   高等法院認為,ISP業者僅提供網路接取的技術服務,毋須監測在其網路內傳輸的資料。只有當ISP業者知悉其本身網路傳輸內容涉非法時,始應被要求去攔截該網路接取。   目前德國法界實務已普遍認可是項判決結果,去年慕尼黑地區高等法院亦做出類似裁判。   然類似案件發生在英美者,則有部分ISP業者被判定,須提供網路音樂檔案持續交換者的個人細部資料。英國倫敦高等法院即於2004年一判決中,認定ISP業者應提供網路上使用者非法進行點對點音樂電影檔案傳輸之個人資料。

強化驗證技術以遏止網路犯罪

  美國聯邦政府與企業界正朝向增加驗證技術的使用,以遏止線上詐騙的盛行,所謂「雙重驗證( ”two-factor” Authentication)」機制,為美國聯邦財政機構檢測委員會(Federal Financial Institutions Examination Council, FFIEC )與美國芝加哥直銷協會( The Direct Marketing Association, DMA )推行,主要要求檢查除用戶名稱和密碼以外的東西來確認顧客的身份。   美國聯邦財政機構檢測委員會 —包括聯邦儲備(Federal Reserve)和聯邦存款保險公司(Federal Deposit Insurance Corp.,FDIC)等管理者在內,要求銀行2006年底皆必須加強網上身份驗證措施,如給每個顧客一份加密的憑證,這些憑證會向銀行證明用戶的真實身份。且該加密的憑證不會向發放該憑證的其它網站做出回應,這樣既保護了用戶,也保護了銀行。此外,美國聯邦財政機構檢測委員會審查員亦會定期檢查銀行的執行情況;而以美國芝加哥直銷協會為例,其要求會員於交易時所使用之電子郵件,須取得電子郵件系統的驗證,以確保電子郵件係由該協會成員所發出。   如同美國芝加哥直銷協會執行長 John A. Greco 所言,消費者可藉由此種驗證方式增加更多信心,對於其所取的資訊係來自可靠來源並具有合法性,可使市場減低網路犯罪之產生並對於政府、企業及消費者有更多保障。

美國專利商標局發布「發明AI」分析報告,由美國專利申請趨勢分析AI技術普及情形

  美國專利商標局(USPTO)於2020年10月27日發布「發明AI:由美國專利觀察AI普及情形」(Inventing AI: Tracing the diffusion of artificial intelligence with U.S. patents)智財資料分析報告,本報告分析2002年至2018年共16年間美國AI專利之申請資料,發現在AI專利申請數量由3萬件成長至6萬件,成長幅度為100%,而在全體專利當中AI相關專利所占比率,也由原本的9%成長至接近16%,顯示在AI技術研發創新與普及率的顯著成長。   報告指出,自1950年圖靈(Alan Turing)提出「機器能否思考?」問題以來,現今AI技術的發展已經達到連圖靈也會讚嘆的水準,AI技術在發明領域的重要性益發提升,活躍於AI領域的發明人占全體專利權人的比率也從1976年的1%提升到2018年的25%,在組織的發明專利上也呈現相同的趨勢;除了美國銀行(Bank of America)、波音公司(Boeing)以及奇異電子(General Electric)之外,前30大頂尖的AI公司都來自資通訊領域,其中佔據首位者為擁有46,752項專利的IBM,其次為擁有22,076項專利的微軟以及10,928項專利的Google,而AI技術的應用領域也更加多元,並且與在地產業做結合,例如應用在奧勒岡州的健身訓練與設備以及北達科他州的農業上。   USPTO指出,經由專利資料分析顯示AI技術的發展不僅有顯著的成長,並逐漸與在地產業結合、落實在不同產業領域的多元應用,AI對於產業的影響力將不亞於電力或半導體,隨著AI領域發明人的顯著成長,未來將有更多AI技術在各領域的應用出現,而擴大AI影響力的關鍵在於發明者與公司能否成功將AI納入現有或新產品的功能、流程或服務之中。

美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件

美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。

TOP