繼YouTube對美國總統大選的影響力逐漸受到各界矚目後,大西洋彼岸的歐盟執行委員會(European Commission),也漸體認到影音分享網站在商業應用外,對言論傳播乃至於政治活動之潛在影響。
有鑑於此,歐盟執行委員會甫於上月二十九日,於YouTube網站上增置一個名為 “EU Tube” 的視聽頻道,以做為歐盟(European Union)官方和歐洲公民間的溝通渠道。
關於此種利用線上影音分享網站作為政府資訊傳播和政策公開宣傳的創舉,有幾點值得國內注意。
首先,此一歐盟執行委員會與YouTube簽訂的頻道協議,乃是非專屬的協定。換言之,歐盟執行委員會仍可同時與其他網站或媒體簽訂類似之服務協議。其次,EU Tube之內容亦不僅限於硬性的政策或行動討論,而包含了從氣候變遷、能源議題到移民等各種公民相關事項,甚至有內容大膽的 ”Film Lovers Will Love This!” 的前衛影片。更有甚之,使用者對於不同影音檔點擊觀看次數(有數百萬人次與僅一千人次的差異)的資訊,也可作為日後進一步分析利用的原始資料。不過,雖然歐盟極力推動其內部之語言多樣性,目前既有的影片仍以英文為主。
歐盟發言人強調,納入YouTube等網站為對外溝通管道的作法,是為了盡可能擴大與歐盟公民的聯繫,但主要仍以易受YouTube吸引的年輕人為主。由此可見,網路網路對不同年齡層、世代的影響仍有差異,而公領域與影音分享網站日漸深化的關係,也考驗傳統媒體和政治互動的準則。
本文為「經濟部產業技術司科技專案成果」
日本總務省未來網路基礎設施研究會(将来のネットワークインフラに関する研究会)4月份針對日本人工智慧(Artificial Intelligence 簡稱AI)、物聯網(Internet of Things 簡稱IoT)、資訊及通訊技術(Information and Communication Technologies 簡稱ICT)等技術相對應之網路基礎設施做作出預測。 在2020年以後第五代通信技術(5G)、物聯網系統、高畫質通訊等技術相繼成熟及普及化,相關業者勢必發展出多樣化、高度專業化使用者需求之網路結構,而手機聯網系統從單純的資訊傳遞網路,逐漸變成社會系統之神經網絡(社会システムの神経網)。 物聯網服務目前係由專用終端設備,並根據特定的應用目的建構,但在未來的網絡基礎設施,可能出現如橫向合作應用的通用平台,到2030年左右物聯網服務中M2M(Machine to Machine,機器和機器之間的通訊)的佔有率估計將達到10%。 人工智慧網路技術不僅僅是虛擬化層網路(仮想化レイヤのネットワーク)之維護和操作,更是物理層面的網路(物理レイヤのネットワーク)資源的管理,AI仍然只擔任協助之工具。其中,物理網絡(物理ネットワーク)和邏輯網絡(論理ネットワーク)應分別處理,邏輯網絡將型成多層次化,將變得難以檢測故障和調查原因,但在安全和可靠的網絡基礎設施下,經營者使用AI技術仍然是沒有問題的。 由於雲端技術、通訊技術之提昇,非電信營運者進入網路經營之商業型態逐漸產生,型成網路使用者、資料提供者之多樣性及複雜性。網路流量方面,在2030年左右將超出100Tbps核心網絡所需的傳輸容量,達到以往的光纖的容量限制,將透過無線電接入技術進一步發展,補足不足的光學寬頻。然而,人們對於網路更快的通信速度、安全性及可靠性的功能需求是沒有改變的。
日本發布資料素養指南之資料引領判斷篇,旨在呼籲企業透過資料分析結果改善並優化企業經營日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料引領判斷篇,主要為呼籲企業透過資料分析結果改善企業經營。 《指南》資料引領判斷篇指出,在進行資料驅動的判斷流程時,需留意三點事項,分述如下: (一) 提出假說、驗證並進行決策 首先盤點利害關係人,蒐集各自的需求與課題,考量可以適用的技術與服務,並以此為基礎提出與事業相關的假說。其次,盤點必要資料並確認其利用可能性,同時針對所缺乏的資料進行取得可能性之評估。下一步,以所取得的資料為基礎進行假說與資料分析結果之驗證。而後,將假說與資料分析結果的驗證成果提供給利害關係人,並以利害關係人的意見為基礎,進行追加資料的取得並同時修正假說內容。最後,基於資料分析結果進行決策。 (二) 判斷決策所必要之資料的信賴性 企業在盤點必要之資料以進行分析並據此進行決策時,由於資料沒有達到特定數量無法用於分析、資料蒐集需花費時間成本,且判斷時點有時亦有其時效性,因此,在確保必要之資料時,會先檢視企業內部所持有之資料,而後確認政府機關的公開資料,如仍缺乏必要之資料,則會確認從資料市場取得之可能性等。在確保必要之資料後,則會判斷決策所必要之資料的信賴性,其主要分為兩點,一為針對資料本身之信賴性,包含資料是否有偏頗、對於資料產出者的信賴性以及資料取得日期、地區等;一為資料傳輸、編輯的信賴性,包含對於資料仲介者的信賴性、資料編輯程式以及資料整合方針。在無法完全確保資料的信賴性時,則會透過相關聯的資料進行資料正確性的檢驗。 (三) 服務導入與監視 資料分析並不僅侷限於現在資料的分析,亦會涵蓋未來資料的預測。舉例而言,自動駕駛資料不僅會分析車輛狀況以及周圍狀況,亦會預測並自動判斷是否需要剎車。透過資料分析結果導入服務後,亦應透過監視檢視決策成效,方法包含滿意度調查、平均使用時間調查等,並針對調查結果進行改善。 我國企業如欲將其所持有之資料用於分析並依照分析結果進行企業經營決策,除可參考日本所發布之《指南》資料引領判斷篇建立內含PDCA四面向之管理制度以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,針對自身所持有之資料建立包含PDCA四面向之管理制度。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
日本產業競爭力強化法簡介—以新事業活動特例制度為中心 美國FTC表示 將檢視網路中立性此一議題美國聯邦交易委員會主席 Deborah Platt Majoras 於日前一場會議中表示, FTC 將成立網路接取工作小組 (Internet Access Task Force) ,負責檢視因科技發展所引發的議題以及法規的發展方向。除此之外,此一工作小組亦將針對近期來爭議不斷的網路中立性 (Net Neutrality) 進行檢視。 Majoras 表示對於是否立法規範網路,宜謹慎加以考量之,因為法規的影響深遠且長久。在缺乏明顯的證據證明市場失靈或消費者有受到損害的情況下,主管機關不宜採取任何法制措施規範市場參與者的行為。對於任何網路中立性或相類似的立法,宜考量其對於現有寬頻平台及市場環境的影響,以及此等立法對於產業未來創新與投資的影響。而關於網路中立性 (Net Neutrality) 之立法需求及細節,將由網路接取工作小組負責檢視之,其後續發展有待未來更進一步的觀察。