繼YouTube對美國總統大選的影響力逐漸受到各界矚目後,大西洋彼岸的歐盟執行委員會(European Commission),也漸體認到影音分享網站在商業應用外,對言論傳播乃至於政治活動之潛在影響。
有鑑於此,歐盟執行委員會甫於上月二十九日,於YouTube網站上增置一個名為 “EU Tube” 的視聽頻道,以做為歐盟(European Union)官方和歐洲公民間的溝通渠道。
關於此種利用線上影音分享網站作為政府資訊傳播和政策公開宣傳的創舉,有幾點值得國內注意。
首先,此一歐盟執行委員會與YouTube簽訂的頻道協議,乃是非專屬的協定。換言之,歐盟執行委員會仍可同時與其他網站或媒體簽訂類似之服務協議。其次,EU Tube之內容亦不僅限於硬性的政策或行動討論,而包含了從氣候變遷、能源議題到移民等各種公民相關事項,甚至有內容大膽的 ”Film Lovers Will Love This!” 的前衛影片。更有甚之,使用者對於不同影音檔點擊觀看次數(有數百萬人次與僅一千人次的差異)的資訊,也可作為日後進一步分析利用的原始資料。不過,雖然歐盟極力推動其內部之語言多樣性,目前既有的影片仍以英文為主。
歐盟發言人強調,納入YouTube等網站為對外溝通管道的作法,是為了盡可能擴大與歐盟公民的聯繫,但主要仍以易受YouTube吸引的年輕人為主。由此可見,網路網路對不同年齡層、世代的影響仍有差異,而公領域與影音分享網站日漸深化的關係,也考驗傳統媒體和政治互動的準則。
本文為「經濟部產業技術司科技專案成果」
瑞典最高法院(Högsta domstolen)於2015/11/18 針對集管團體Copyswede 與瑞典電信公司Telia Sonera 之訴訟案發出審查允許(prövningstillstånd)之決定。此案之爭點在iPhone手機若屬於瑞典著作權法 § 26 k上之為私人重製之工具(en produkt som är särskilt ägnad för privatkopiering),則應納入私人重製補償金之對象。 Copyswede是依瑞典著作權法管理私人重製補償金之團體,於本案中向Telia Sonera 請求繳納補償金,理由在於瑞典電信公司Telia Sonera自2009/01/01進口iPhone各型式手機,Copyswede主張iPhone手機型式為一種適合用於私人重製之工具,故Telia Sonera應繳納補償金,於是向此案一審法院Södertörns tingsrätt提出訴訟。一審法院以iPhone手機之功能及其實際使用情形為判斷基準,以中間裁定方式(Mellamdom)認定iPhone手機確屬瑞典著作權法上之「私人重製之工具」,二審法院Svea hovrätt亦採相同見解。不服此一認定之Telia Sonera於是請求瑞典最高法院進行審查。
歐盟資通安全局發布《物聯網安全準則-安全的物聯網供應鏈》歐盟資通安全局(European Union Agency for Cybersecurity, ENISA)於2020年11月發布《物聯網安全準則-安全的物聯網供應鏈》(Guidelines for Securing the IoT – Secure Supply Chain for IoT),旨在解決IoT供應鏈安全性的相關資安挑戰,幫助IoT設備供應鏈中的所有利害關係人,在構建或評估IoT技術時作出更好的安全決策。 本文件分析IoT供應鏈各個不同階段的重要資安議題,包括概念構想階段、開發階段、生產製造階段、使用階段及退場階段等。概念構想階段對於建立基本安全基礎非常重要,應兼顧實體安全和網路安全。開發階段包含軟體和硬體,生產階段涉及複雜的上下游供應鏈,此二階段因參與者眾多,觸及的資安議題也相當複雜。例如駭客藉由植入惡意程式,進行違背系統預設用途的其他行為;或是因為舊版本的系統無法隨技術的推展進行更新,而產生系統漏洞。於使用階段,開發人員應與使用者緊密合作,持續監督IoT設備使用安全。退場階段則需要安全地處理IoT設備所蒐集的資料,以及考慮電子設備回收可能造成大量汙染的問題。 總體而言,解決IoT資安問題,需要各個利害關係人彼此建立信賴關係,並進一步培養網路安全相關專業知識。在產品設計上則須遵守現有共通的安全性原則,並對產品設計保持透明性,以符合資安要求。
美國國家安全局發布「軟體記憶體安全須知」美國國家安全局(National Security Agency, NSA)於2022年11月10日發布「軟體記憶體安全須知」(“Software Memory Safety” Cybersecurity Information Sheet),說明目前近70%之漏洞係因記憶體安全問題所致,為協助開發者預防記憶體安全問題與提升安全性,NSA提出具體建議如下: 1.使用可保障記憶體安全之程式語言(Memory safe languages):建議使用C#、Go、Java、Ruby、Rust與Swift等可自動管理記憶體之程式語言,以取代C與C++等無法保障記憶體安全之程式語言。 2.進行安全測試強化應用程式安全:建議使用靜態(Static Application Security Testing, SAST)與動態(Dynamic Application Security Testing, DAST)安全測試等多種工具,增加發現記憶體使用與記憶體流失等問題的機會。 3.強化弱點攻擊防護措施(Anti-exploitation features):重視編譯(Compilation)與執行(Execution)之環境,以及利用控制流程防護(Control Flow Guard, CFG)、位址空間組態隨機載入(Address space layout randomization, ASLR)與資料執行防護(Data Execution Prevention, DEP)等措施均有助於降低漏洞被利用的機率。 搭配多種積極措施增加安全性:縱使使用可保障記憶體安全之程式語言,亦無法完全避免風險,因此建議再搭配編譯器選項(Compiler option)、工具分析及作業系統配置等措施增加安全性。
5G汽車協會發布《先進駕駛案例-聯網技術與無線電頻譜需求之遠景路線圖》5G汽車協會(5G Automotive Association, 5GAA)於2020年9月9日發布「先進駕駛案例-聯網技術與無線電頻譜需求之遠景路線圖」(A visionary roadmap for advanced driving use cases, connectivity technologies, and radio spectrum needs),提供車聯網技術與產業利益相關者對於未來遠景之綜整觀點。 白皮書著重於結合通訊科技之先進駕駛系統,具體描述先進駕駛系統與連結通訊技術在全球發展的現況與展望外,同時呼籲各國應提供車聯網(V2X)應用上足夠的無線通訊頻譜,以涵蓋接下來蜂巢式車聯網(C-V2X)、專用短程通訊技術(Dedicated Short Range Communications, DSRC),及5G-V2X之通訊技術普及,指出汽車與電信等全體利害關係產業共同合作已是趨勢,以確保整體車聯網交通獲得必要的投資與創造新的商機,更有利發揮車聯網真正效益。希冀運用車聯網技術增進未來道路交通之安全性、改善交通效率、降低環境生態之衝擊,並提升駕駛舒適性與整體運輸環境。迄今,全世界高達近2億部通訊聯網車輛於道路上行駛,透過技術得以交換交通與路況資訊,而具備蜂巢式通訊資訊能力之車輛數亦日益增加,證明各國已逐步完備基礎通訊技術與相關基礎建設之布建,而未來5G車聯網更將立基於此,進一步聚焦於運用5G-V2X提升駕駛效率與安全,技術上包括整合最新晶片組與模組的車載設備(OBU)、路側設備(RSU)、智慧型手機,提出感測器共享與協同操控等先進駕駛應用案例。 此外,白皮書更對車聯網行動通訊之頻譜提出建議,概述在國際數位交通運輸體系下,車輛、用路人、路側設備及智慧運輸系統基礎設施,應與蜂巢式網路之通訊協調,共同使用5855至5925MHz中低頻段之通訊頻譜,以提升無線頻譜的運用效益、行動網路涵蓋率與通訊之安全性。而欲實現端對端之車聯網與發揮車輛連網的真正效益,亦需為專用短程通訊技術在5.9GHz提供足夠的頻段分配,其中基本安全應用需要10~20MHz,先進駕駛應用則額外還需至少40MHz,並提供路側設備低延遲性網路服務,以利資訊即時傳輸,白皮書更強調基本和先進駕駛系統之頻譜需求差異將涉及安全性之問題,不可輕視。