美國參議院擬針對生物燃料提供稅賦優惠

  先進的能源發展方向是開發先進技術,利用生物材料(如能源作物或生物排泄物)等生物性資源來生產能源,此種能源生產方式又稱為生質能源。由於生質能源的建置成本高,故業界多冀盼政府能給予財務方面的支援。

 

  最近美國布希總統已經設定透過增加對潔淨、再生的生物燃料的使用,降低美國對進口石油的依賴以及溫室氣體排放量,而基於同樣的目標,美國參議院財務委員會(Senate Finance Committee)最近更提出了能源進化及投資法(Energy Advancement and Investment Act of 2007, EAIA),希望能鼓勵大規模的商業投資,以促進生物燃料的生產與使用。

 

  EAIA特別針對使用纖維性質的生物材料(cellulosic biomass)來生產生物燃料之製造者,提供生產上的租稅扣抵(production credit),與此同時並擴大既有針對乙醇所實施的優惠措施之適用範圍。這兩大租稅優惠是為了鼓勵企業生產者加速推動生物燃料的開發,儘快使生物燃料可以供應市場所需達到10億加侖的水準。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 美國參議院擬針對生物燃料提供稅賦優惠, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2333&no=64&tp=1 (最後瀏覽日:2026/01/29)
引註此篇文章
你可能還會想看
日本最高法院新判決裁定日立需支付前員工發明報酬一億六千萬餘日圓

  日本最高法院最近裁定,日立( Hitachi )必須支付一億六千三百萬日圓(約四千五百萬台幣)給取得三項光碟讀取技術發明專利的前工程師米澤成二( Seiji Yonezawa )。一九九六年退休的米澤,於一九七三到一九七七年間,將其開發出來的三項有關光碟讀取技術發明專利移轉給任職的日立公司,當時他僅獲日立支付二百三十萬日圓酬勞,米澤嫌酬勞太少而提起訴訟,要求日立支付二億八千萬日圓酬勞。   東京地方法院於二○○二年作成的裁定,認定日立因該專利在日本國內所獲利益約兩億五千萬日圓,依米澤的貢獻度百分之十四計算,命令日立支付約三千五百萬日圓。但在日立上訴至東京高等法院的第二審,高院於二○○四年裁定,加上日立在英美等六個外國取得專利所獲利益約共十一億八千萬日圓,扣除已支付金額,日立應再支付約一億六千三百萬日圓酬勞給米澤。米澤原本訴請日立支付發明報酬兩億八千萬日圓,此案在最高法院駁回日立提起的上訴後判決定讞。   根據日本特許法(專利法)規定,受雇人取得發明專利時,企業需支付相對報酬予發明人,不過對於報酬之合理性,受雇人及雇用人近年來迭有爭議並訴諸司法解決。雖然日本國會在 2004 年 5 月 28 日 通過專利法修正案,進一步使報酬之計算要件更加具體、明確化,日本專利局也隨後在 2004 年 11 月公布「新受雇人發明制度之程序個案研究」( The Case Studies of the Procedures under the New Employee Invention System ),以問答方式闡釋新修正之發明人報酬規定之意義與適用方法,並尋求一個較為合理的標準,提供受雇人與雇用人間訂定報酬金時之參考。   然而,境外專利權是否應該列入報酬金之計算,新法則未規定,故此問題仍然存在,對此下級法院的判決不一,日本最高法院最近做出確定在海外取得的專利亦得支付相對報酬之裁決,這項司法裁定,勢必會影響到擁有國外專利的眾多日本企業。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

歐盟資通安全局公布《提升歐盟軟體安全性》研究報告

  歐盟資通安全局(European Union Agency for Cybersecurity, ENISA)於2020年4月25日以歐盟網路安全驗證框架(EU cybersecurity certification framework)檢視現行安全軟體開發及維護之方式與標準,並公布《提升歐盟軟體安全性》(Advancing Software Security in the EU)研究報告。歐盟資通安全局後續將以該研究報告協助產品、服務及軟體開發之驗證,並期望能夠成為執行歐盟網路安全驗證框架相關利害關係人之非強制性參考文件之一。   本報告指出由於安全軟體已普遍應用於日常商品與服務當中,但目前針對軟體安全事故並無相對應之安全守則及技術,故為提高軟體安全層級並緩解目前已知之軟體安全威脅,應針對安全軟體開發及維護進行規範並驗證。   報告中除了針對軟體安全提出其應具備之要素、概述現行安全軟體開發方式及標準之缺點外,亦提出若以歐盟網路安全驗證框架針對軟體開發方式進行驗證時可考量之一些實際做法,包括: 已驗證之資訊與通訊科技(Information and Communication Technology, ICT)產品、服務或流程供應商或製造商,針對資料庫之部署及維護,除探討防止資料洩漏之方式外,尚應考量產品、服務或流程驗證過程中,進行資料共享會面臨之安全威脅以及緩解之方式。 應與歐洲標準組織(European Standards Organizations, ESOs)及標準制定組織(Standards Developing Organization, SDOs)合作。 建立一些針對軟體開發、維護及操作準則以補充現有歐盟網路安全驗證方案(EU cybersecurity certification schemes)。 針對現行不一致之軟體開發及維護規範,應考量建立較寬鬆之合規性評估(conformity assessment)標準。 借鏡現有經驗和專業知識,促進歐盟網絡安全驗證框架之適用。

「資訊儲存服務」提供者法律責任之研究-以日本實務新興發展為例

TOP