先進的能源發展方向是開發先進技術,利用生物材料(如能源作物或生物排泄物)等生物性資源來生產能源,此種能源生產方式又稱為生質能源。由於生質能源的建置成本高,故業界多冀盼政府能給予財務方面的支援。
最近美國布希總統已經設定透過增加對潔淨、再生的生物燃料的使用,降低美國對進口石油的依賴以及溫室氣體排放量,而基於同樣的目標,美國參議院財務委員會(Senate Finance Committee)最近更提出了能源進化及投資法(Energy Advancement and Investment Act of 2007, EAIA),希望能鼓勵大規模的商業投資,以促進生物燃料的生產與使用。
EAIA特別針對使用纖維性質的生物材料(cellulosic biomass)來生產生物燃料之製造者,提供生產上的租稅扣抵(production credit),與此同時並擴大既有針對乙醇所實施的優惠措施之適用範圍。這兩大租稅優惠是為了鼓勵企業生產者加速推動生物燃料的開發,儘快使生物燃料可以供應市場所需達到10億加侖的水準。
本文為「經濟部產業技術司科技專案成果」
於2016年10月14日,中國大陸科技部為落實國務院於5月9日發布之《促進科技成果轉移轉化行動方案》中,有關大力推動地方科技成果轉移轉化,並開展區域性科技成果轉移轉化試點示範的要求,開始啟動在河北以及寧波,兩個科技成果轉移轉化示範區的建設計畫。 中國大陸推動國家科技成果轉移轉化示範區之目的在於推動科技成果轉移轉化工作,以期能有助於完善區域科技成果轉化政策環境,並且提升區域創新之能力;示範區的建設重點將在於完善科技成果轉化服務體系、建設科技成果產業化載體、開展政策先行先試等方面開展工作,進行地方的創新驅動發展。 為此,中國大陸科技部並印發了《科技部關於建設河北•京南國家科技成果轉移轉化示範區的函》、《科技部關於建設寧波國家科技成果轉移轉化示範區的函》兩份政策文件,其中河北•京南示範區的重點在於配合北京、天津,以及河北的區域協同發展,充分發揮跨區域輻射帶動作用,並且承接北京及天津的創新要素外溢轉移,以及與河北產業創新需求進行對接。而寧波示範區將則以科技成果轉化對產業和企業創新發展的對接為核心戰略,發展以企業為主體的科技成果轉移轉化示範區域。並以這兩個示範區的測試來探索模式、累積經驗。
德國聯邦內閣通過「數位家庭給付法」草案,結合數位科技整併各項出生證明、津貼或補助申請窗口德國聯邦內閣2020年6月24日通過「數位家庭給付法」草案(Entwurf eines Gesetzes zur Digitalisierung von Familienleistungen),該草案由德國聯邦內政、建設及家園部(Bundesministeriums des Innern, für Bau und Heimat, BMI)及德國聯邦家庭、老年、婦女與青年部(Bundesministeriums für Familie, Senioren, Frauen und Jugend, BMFSFJ)共同提出。草案目的在使多項家庭津貼與補助可以透過網路科技整併至單一申請窗口;利用數位科技的電子治理模式,簡化繁複的紙本申請流程,使用「一鍵式」(ein Klick)服務讓民眾可透過電腦或廣為普及的智慧型手機直接申請。 「數位家庭給付法」草案主要規範內容下列3個面向: 整合與家庭相關之津貼或補助項目:為減輕新生兒父母或監護人(Erziehungsberechtigte)的照顧負擔,BMI及BMFSFJ欲將姓名登記、出生通報、父母津貼(Elterngeld)、育兒津貼(Kindergeld)及兒童補助(Kinderzuschlag)等5項服務合併申請(Kombiantrag),匯整至單一申請窗口。 提供機關間個資合法傳輸基礎:由於申請前述的津貼或補助項目時,申請人須向聯邦政府、各邦政府、法定健康保險機構或雇用人申請相關證明文件,未來處理公共服務之機關經申請人同意合法授權下,得跨部門調閱申請服務相關之資料。 符合資訊安全及個資保護的基礎:該法要求應建立可受信賴的數位授權控管措施,且得驗證數位身分之安全層級,相關措施應符合德國「網路近用法」(Onlinezugangsgesetz, OZG)第8條及歐盟「一般個人資料保護規則」(General Data Protection Regulation, GDPR)的規範要求。 聯邦內閣目前已將該草案提交予聯邦議會審查,預計最快自2022年1月1日分階段實施。然而,德國聯邦政府考量新冠肺炎疫情期間,懷孕婦女或年輕父母採用書面申請,將大幅提高感染COVID-19病毒的風險。因此,該法允許合併申請出生證明、補助或津貼,在今年(2020年)於不來梅邦(Bremen)啟動試辦計畫,另預計明年(2021年)將於其他邦展開相關電子化的申請服務。
2025年美國營業秘密管理重要實務本文整理美國2025上半年營業秘密管理重要實務,以協助企業強化營業秘密保護。 一、實務常見的兩種不當使用營業秘密情境 由於數位化發展與遠距工作盛行,員工可以更容易地透過隨身碟、電子信箱等方式接觸並傳輸機密(數位文件)。 提醒公司應留意兩個實務常見的不當使用營業秘密的情境: 1. 員工離職後創業或跳槽至競爭公司。 2. 在公司因收購計畫進行盡職調查時,或公司與他方存有供應商、獨立承包商等合作關係期間,公司與他方共享機密資料,接收資訊方卻於協商破局/合作結束後持續留存並不當使用機密。 二、為防患未然,建議公司應「打造營業秘密保護文化」 「打造營業秘密保護文化」的7項重點如下: 1. 識別機密 公司應識別自身所擁有的營業秘密,區分營業秘密與一般資料。如果公司不清楚自己的營業秘密範圍,也會增加員工不知道需要謹慎處理哪些資料的風險。 2. 控管機密文件的重製、流通行為 監控機密文件的列印、下載等重製行為,禁止將公司機密資料傳輸至私人信箱或私人雲端帳戶。 3. 與員工簽訂保密契約,定期提醒保密義務,並客製化員工培訓課程 公司除與員工簽訂保密契約外,當員工開始新專案、轉調部門或升遷時,職務內容的變動,也會連帶影響公司需要向員工更新其對保密義務的理解。 公司應自員工入職起,進行定期的保密培訓與宣導,並針對特定職位客製化相關具體的保密情境,讓員工能夠確實了解公司的保密政策,知道自己應採取/不應採取某些行動,以及行動背後的原因。例如:工程師須了解技術文件的保護方式;銷售團隊需要與客戶資料、定價策略相關的保密培訓課程。 4. 離職人員管理 離職面談應明確提醒員工具持續性的保密義務,且留下相關紀錄,內容應包含對員工任職期間所接觸任何營業秘密的討論資訊,並讓員工簽署書面聲明,確認自己具有保密義務。 5. 網路控管 遠距登入公司系統須透過VPN。 6. 外部活動管理 公司應留意與外部單位(潛在合作夥伴、供應商或客戶)共用敏感資料時,契約須明確約定可共用的資料範圍、可共用資料的人員以及可共用資料的情境。契約應包含保密契約、標示機密資料、返還機密的流程以及定期稽核以確保遵守保密義務。 7. 稽核與改善 定期稽核與持續改善有助於強化營業秘密保護機制,例如:法務、資訊、研發及銷售等部門跨部門協力合作,並持續培訓以打造營業秘密保護文化。 三、面臨營業秘密訴訟,行動策略為關鍵 營業秘密案件通常需要立即採取行動,以防止造成無法彌補的損害。由於在訴訟階段,法院不會僅憑「懷疑」或「模糊描述」就核發禁制令。建議公司平時應落實以下管理措施,以便能夠在發現風險行為後2~3天內,迅速蒐集相應佐證: 1. 證據保全機制應包含:妥善保存電子郵件、系統存取紀錄、裝置使用紀錄等證據。 2. 區分營業秘密的範圍。 3. 持續執行公司所設定的控管措施,如:公司保密政策;保密契約、僱傭契約等契約的保密義務;員工培訓。 4. 留存能夠佐證營業秘密的經濟價值的相關資訊,如:研發投入成本、競爭優勢等。 綜上,公司如欲減少實務上營業秘密糾紛風險,應及早確認是否落實、需要精進公司的營業秘密管理機制,建議國內公司可參考資策會科法所創意智財中心於2023年發布之「營業秘密保護管理規範」,協助公司檢視並循序調整營業秘密管理作法。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
加拿大政府就生成式人工智慧對著作權的影響進行公眾諮詢加拿大政府於2023年10月23日至12月4日針對「生成式人工智慧對著作權的影響」(consultation on the implications of generative artificial intelligence for copyright)進行公眾諮詢,以期了解生成式人工智慧對於加拿大著作權市場之變化,進而修訂《著作權法》(Copyright Act),本次諮詢文件中討論重點整理如下: 1.文字和資料探勘(Text and Data Mining, TDM):是否需要因應TDM修改加拿大原本的著作權法,包含著作權法中合理使用行為(29條)和暫時性重製行為(30.71條)等得不構成侵害之例外條款。學者、AI使用者以及AI技術團體大多持肯定見解,認為TDM行為中使用的著作時不需要權利人的著作權授權;然創意產業則多持否定見解,認為不應該為TDM創設例外,否則將會使得TDM所使用之作品原著作人無法主張權利以獲得授權金。 2.人工智慧生成作品之著作人身分及著作權歸屬:因利用生成式人工智慧所創作或輔助創作之文字、圖像和音樂有作者身分不明確之虞,因此加拿大政府希望可以對此加以澄清,並討論是否需要修改原本的著作權法案中相關規定。針對作者身分不明確之爭議,加拿大政府提出了三種可能的規範模式: (1)闡明著作權保護只適用於自然人創作的作品; (2)將人工智慧生成作品之作者歸屬於在創作作品時運用技能和判斷力的自然人,凡自然人可以在人工智慧技術輔助下創作的作品中貢獻足夠的技能和判斷力,即可被視為該作品的作者; (3)為人工智慧生成的作品創設一套新的權利。 3.人工智慧之侵權責任:人工智慧係透過大量的資料庫來生成一項作品,過程中可能出現侵害他人著作權之情形,而加拿大現行的著作權法框架下很難認定侵權行為之責任歸屬。加拿大現行的著作權法要求被侵權人(著作人)必須證明侵權人明知其重製行為侵犯他人著作權,且就該他人著作加以重製,但一般人難以瞭解人工智慧系統開發及訓練過程,因此難證明人工智慧系統研發與利用過程中的業者、工程師或其他相關人等是否有侵權行為。因此加拿大政府希望利害關係人就此議題提供更多意見,以協助將來修法、提高市場透明度。 生成式人工智慧雖然提供了便利的創作方式並帶來巨大經濟利益,卻也可能侵害他人著作權,因此平衡著作人之權利並兼顧經濟發展是加拿大政府及國際社會課正積極解決的議題。