美國參議院擬針對生物燃料提供稅賦優惠

  先進的能源發展方向是開發先進技術,利用生物材料(如能源作物或生物排泄物)等生物性資源來生產能源,此種能源生產方式又稱為生質能源。由於生質能源的建置成本高,故業界多冀盼政府能給予財務方面的支援。

 

  最近美國布希總統已經設定透過增加對潔淨、再生的生物燃料的使用,降低美國對進口石油的依賴以及溫室氣體排放量,而基於同樣的目標,美國參議院財務委員會(Senate Finance Committee)最近更提出了能源進化及投資法(Energy Advancement and Investment Act of 2007, EAIA),希望能鼓勵大規模的商業投資,以促進生物燃料的生產與使用。

 

  EAIA特別針對使用纖維性質的生物材料(cellulosic biomass)來生產生物燃料之製造者,提供生產上的租稅扣抵(production credit),與此同時並擴大既有針對乙醇所實施的優惠措施之適用範圍。這兩大租稅優惠是為了鼓勵企業生產者加速推動生物燃料的開發,儘快使生物燃料可以供應市場所需達到10億加侖的水準。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 美國參議院擬針對生物燃料提供稅賦優惠, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2333&no=64&tp=1 (最後瀏覽日:2026/02/13)
引註此篇文章
你可能還會想看
美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件

美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。

美國專利商標局發布「發明AI」分析報告,由美國專利申請趨勢分析AI技術普及情形

  美國專利商標局(USPTO)於2020年10月27日發布「發明AI:由美國專利觀察AI普及情形」(Inventing AI: Tracing the diffusion of artificial intelligence with U.S. patents)智財資料分析報告,本報告分析2002年至2018年共16年間美國AI專利之申請資料,發現在AI專利申請數量由3萬件成長至6萬件,成長幅度為100%,而在全體專利當中AI相關專利所占比率,也由原本的9%成長至接近16%,顯示在AI技術研發創新與普及率的顯著成長。   報告指出,自1950年圖靈(Alan Turing)提出「機器能否思考?」問題以來,現今AI技術的發展已經達到連圖靈也會讚嘆的水準,AI技術在發明領域的重要性益發提升,活躍於AI領域的發明人占全體專利權人的比率也從1976年的1%提升到2018年的25%,在組織的發明專利上也呈現相同的趨勢;除了美國銀行(Bank of America)、波音公司(Boeing)以及奇異電子(General Electric)之外,前30大頂尖的AI公司都來自資通訊領域,其中佔據首位者為擁有46,752項專利的IBM,其次為擁有22,076項專利的微軟以及10,928項專利的Google,而AI技術的應用領域也更加多元,並且與在地產業做結合,例如應用在奧勒岡州的健身訓練與設備以及北達科他州的農業上。   USPTO指出,經由專利資料分析顯示AI技術的發展不僅有顯著的成長,並逐漸與在地產業結合、落實在不同產業領域的多元應用,AI對於產業的影響力將不亞於電力或半導體,隨著AI領域發明人的顯著成長,未來將有更多AI技術在各領域的應用出現,而擴大AI影響力的關鍵在於發明者與公司能否成功將AI納入現有或新產品的功能、流程或服務之中。

美國加州日前開始審查輕量自動駕駛運輸載具應用之測試申請

  美國加州行政法辦公室(the Office of Administrative Law)於2019年12月17日宣布,根據日前通過之修訂規範,該州車輛管理局(the Department of Motor Vehicles)將審查州內公共道路上進行輕型自動駕駛(下稱自駕)運輸服務商業化應用測試之申請,換言之,業者如取得車輛管理局之核准,可以測試重量未達10,001磅之自駕運輸車輛(如一般客車、中型貨車、可載運雜貨類商品的客貨兩用車等)服務。另外,業者如欲就該自駕運輸服務收取運輸費用,則必須另向車輛管理局申請佈署(deployment)許可,即商業化或供公眾使用之許可。   不論何種自駕運輸車輛服務之測試,均須遵循現行測試、佈署之申請程序要求,並根據車輛管理局的核准內容進行有或無安全性駕駛人(safety driver)的自駕運輸服務測試,簡要整理不同規範要求如下: 如為有安全性駕駛人之測試與應用,有以下要求: 證明車輛已經曾在符合應用目的之情境(如駕駛環境)下進行測試。 維持測試駕駛人(test driver)的培訓規劃,並且證明每位測試駕駛人均完成培訓。 確保測試駕駛人維持潔淨(clean)的駕駛記錄。 確保測試駕駛人在測試期間乘坐在駕駛座上監控車輛的運行狀況,並在有需要的時候可以即時接管車輛。 須提交年度脫離(或譯為解除自駕)報告(disengagement report),且如有發生碰撞,須於10日內提交碰撞報告予車輛管理局。   如為無安全性駕駛人之測試與應用,有以下要求: 提供測試自駕運輸服務所在地方當局之書面通知以茲證明。 證明自駕測試車輛符合以下要求:   (1)車輛與遠端遙控操作者間具有通訊連結。 (2)車輛與執法部門間的通訊方式。 (3)製造商將如何監控測試車輛之說明 提交一份與執法部門如何互動交流的計畫。 證明自駕測試車輛符合聯邦機動車輛安全標準(FMVSS),或提供國家公路交通安全管理局(NHTSA)之豁免監管證明。 證明自駕測試車輛可以在沒有駕駛人存在的情況下可以自主運行,並屬於美國汽車工程師協會(SAE)標準等級4、等級5之車輛。 證明測試車輛已經曾在符合應用目的之情境(如駕駛環境)下進行測試。 通知車輛管理局將要測試營運的區域範圍。 維持遠端遙控操作相關培訓規劃,並證明每位遠端遙控操作者均完成培訓。 須提交年度脫離報告,且如有發生碰撞,須於10日內提交碰撞報告予車輛管理局。   如自駕運輸服務擬商業化或供公眾使用,申請佈署之相關要求如下: 證明車輛:   (1)配備自駕車輛資料紀錄器,此技術是根據加州車輛法規(California Vehicle Code)設計來偵測並反應道路實際狀況 (2)符合聯邦機動車輛安全標準或提供國家公路交通安全管理局之豁免監管證明。 (3)符合現行關於網路攻擊、非經授權侵入或錯誤車輛控制指令之防護、偵測與回應等產業標準。 (4)製造商曾進行測試與驗證,並有足夠信心將車輛佈署於公用道路上。 提交一份與執法部門如何互動交流的計畫複本。 如果車輛不需要駕駛員,製造商必須證明其他事項:   (1) 車輛與遠端遙控操作者間具有通訊連結。 (2) 當碰撞事故發生時,車輛可以顯示或傳輸相關資訊予車輛所有人或操作員。   綜上所述,若要在加州進行自駕運輸車輛服務測試,須視其服務型態及是否涉及佈署,以遵循不同規範要求,申言之,服務採行有無安全性駕駛人與是否商業化或供公眾使用,二者為併行關係,舉例來說,如業者擬佈署有安全性駕駛人之商業運輸服務,則須同時符合有安全性駕駛人之測試與應用以及佈署等要求。加州對於自駕車輛運輸服務商業化之措舉,值得我國借鏡以完善自駕車輛運輸應用之推動。

英國發布國家資料戰略(National Data Strategy)

  英國數位、文化、媒體暨體育部(Department for Digital, Culture, Media & Sport)於2020年9月9日發布「國家資料戰略」(National Data Strategy),作為英國規劃其政府資料流通運用的整體性框架。數位、文化、媒體暨體育部長Oliver Dowden表示,資料為驅動現代社會經濟發展的關鍵。於今年COVID-19的全球疫情流行期間,政府、企業、組織等彼此及時共享重要資訊,除達成了防疫目標,更維繫了各層面的經濟生活。因此,本戰略則規劃活用此段期間獲得的知識與經驗,試圖透過資料的釋出流通與運用,讓英國經濟自COVID-19疫情中復甦,提高生產力與創造新型業態,改善公共服務,並使之成為推動創新的樞紐。   為優化英國資料的運用,本戰略提出了四個核心面向:(1)資料基礎(data foundation):資料應以標準化格式,且符合可發現(findable)、可取用(accessible)、相容性(interoperable)與可再利用(reusable)的條件下記載;(2)資料技能(data skills):應藉由教育體系等培養一般人運用資料的技能;(3)提升資料可取得性(data availability):鼓勵於公共、私人與第三部門加強協調、取用與共享具備適切品質的資料,並為國際間的資料流通提供適當的保護;(4)負責任的資料(responsible):確保各方以合法、安全、公平、道德、可持續、和可課責(accountable)的方式使用資料,並支援創新與研究。   基此,本戰略進一步提示了五個優先任務:(1)釋出資料的整體經濟價值:建立適切的條件,使資料在經濟體系內可取得且具備可取用性,同時保護私人的資料權(data rights)、以及企業的相關智慧財產權;(2)建構具發展性且可信賴的資料機制:協助企業家與新創人士以負責任及安全的方式使用資料,避免產生監管上的不確定性或風險,並藉以推動經濟發展。同時,也期待藉由機制的建立,鼓勵公眾參與資料的數位經濟應用;(3)改變政府運用資料的方式,提升效率及改善公共服務:以COVID-19疫情期間政府對資料積極運用為契機,推動政府間的整體資料有效管理、使用與共享措施,為相關作法建構一致性的標準與最佳實踐方式;(4)建立資料基礎設施的安全性與彈性:資料基礎設施為國家關鍵資產,應避免其遭遇安全或服務中斷的風險,進而導致資料驅動的相關業務或組織服務中斷;(5)推動國際資料流(international flow of data):與國際夥伴合作,確保資料的流通運用不會因各地域的制度不同,而受到不當限制。

TOP