今年年初德國聯邦政府向參議會提出「衛星資料保護法(SatDSiG)草案」,為國家以外的衛星資料利用,制定明確的規範。該草案將是歐洲第一個針對此議題所提出的草案。
該草案指出,利用「地表遙感偵查系統(Erdfernerkundungssystem)」所得資料或其所衍生的產品,不僅對國家軍事、外交安全帶來威脅,也可能造成個人隱私權的侵害。
該草案其他內容包括,所有「地表遙感偵查系統」的經營均須經過政府許可且受公權力監督。業者在接受客戶委託時,須特別注意是否有任何危害到德國國家安全的可能。其中判斷的標準如,所得資料涉及的內容、委託者身分、受委託偵測的地區、受委託的時間。如經衡量有涉及國家安全,則該資料的散佈須得政府的同意。
草案所稱衛星資料衍生產品例如照片、雷達資料以及其他經數位化商品如手機定位系統服務。違反者將面臨最高5年徒刑或50萬歐元罰金。
德國國會經濟委員會在9月10日針對該草案舉辦公聽會。會中隱私權保護團體也表達支持制定該法,各界亦贊同以專法約束具商業性的衛星資料取得利用,以保護個人隱私權。隱私權團體進一步表示,所有的衛星資料都涉及到地理資料,當衛星地理資料與其他可供識別個人身分的資料結合,則威脅到個人隱私權,而這些資料不當使用對於公眾人物格外敏感。
Google則表示,該草案適用客體應明確排除如搜索引擎等服務,且Google針對搜尋結果的圖片上網前,均會檢查其內容是否不當或違法。
V2V(Vehicle-to-vehicle)通訊使用短程無線通訊技術(dedicated short-range radio communication, DSRC)交換周邊車輛速度與位置等相關訊息,並協助採取相對應措施,如警告駕駛前方車輛正在剎車,或於駕駛視線死角處有其他車輛正高速接近。因此,使用V2V通訊技術可有效避免車輛間相互碰撞、紓解交通壅塞之問題,對環保方面亦有所助益,然而,此技術於多數車輛間得以相互通訊時,方能最大化其效益。 V2V通訊技術可以每秒約10次之頻率,使車輛間相互廣播並接收全面之訊息,從而在一定距離範圍內360度「感知」其他車輛並與其他車輛進行「對話」。若將搭載V2V通訊技術之車輛配備適當的軟體或安全設備,車輛間即可利用接收到的有效訊息來避免潛在的事故威脅。V2V通訊技術可偵測出超過300公尺範圍之交通情況,包括因交通、地形或天氣影響而受人類駕駛忽略之危險,較傳統使用雷達系統或攝影鏡頭進行偵測之方式更為精準。 無論是機車、汽車、卡車及公車皆可使用V2V通訊技術以提升車輛安全系統的性能,車輛間之連接技術將成為協助駕駛發現潛在交通危機的輔助工具,有助於顯著減少每年因交通事故喪生之人數。
論ENUM服務推動與應用之法制議題 美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。
美國創新戰略推動下科技政策與重要法案之觀察