美國眾議院在今年9月7日,表決通過「2007年專利改革法案(The Patent Reform Act of 2007)」,由於該法案中有部分內容,如:申請優先制度與賠償數額的計算標準等內容,預計將影響美國專利制度發展與未來法院關於專利訴訟案件的進行,因此引發各界專注。
此次眾議院通過的「2007年專利改革法案」重點在於修改專利案件中關於侵權賠償的計算標準,將以該專利對整體產品的貢獻度為主,做出適當的賠償數額。另外還有限制上訴地點的提出等,而且其中影響最大的改採「申請優先制度」(First-to-File System)。
目前美國專利制度採行是所謂的「發明優先制度」(First-to-Invent System),但未來依據「2007年專利改革法案」的內容,將轉變為世界各國採行的「申請優先制度」,故被稱為是美國專利制度50年來最重大的變革。
本項法案的通過,各界正反面的意見都有,支持的人說這項法案的內容可以遏止專利訴訟的濫用,使企業間的經濟活動得以正常發展。但是反對的人認為,限制賠償數額、上訴地點等,將使利用專利為惡的人更形囂張,削弱專利保護的機制,反而會阻礙美國甚至是世界各國的專利制度發展。
本文為「經濟部產業技術司科技專案成果」
2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。 該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。 實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之: 一、人員面: 1.員工(教育訓練、合約) 在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。 在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。 2.生成式AI工具提供者(合約) 針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。 二、技術方面: 建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。 綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國欲修改HIPAA規則以促進「整合醫療照護」,並發表公眾意見徵詢書美國《健康保險可攜性及責任法》(HIPAA)係「保護個人電子醫療資訊隱私」的法規。其「受規範對象」(Covered Entity)為:使用電子方式傳送任何醫療資訊的醫療計畫、健康資訊處理機構(Health Care Clearinghouses)或醫療照護提供者。2018年12月14日,美國衛生及公共服務部(下稱:官方)發表〈公眾意見徵詢書:修改HIPAA規則以促進整合醫療照護〉(Request for Information on Modifying HIPAA Rules to Improve Coordinated Care),擬修正方向如下: (一)促進醫療行為、整合醫療照護、專案管理的資料分享 HIPAA原先僅允許受規範機關在醫療行為、支付、營運中揭露受保護健康資訊(PHI)。然而,這並不包含醫療照護或專案管理。官方傾向修法讓醫療照護或專案管理成為允許揭露PHI的情形。同時,也希望修法讓PHI的取得更具時效性,以利於病歷在受規範對象間的流通。 (二)推動親友參與解決當事人鴉片類藥物成癮和精神疾病問題 HIPAA允許受規範對象在特定條件下,向照護者(Caregiver)揭露PHI,包含緊急狀況,也包含嚴重的精神疾病。然而,許多受規範對象因為擔心違反HIPAA,而不願通知當事人的親友。這種狀況相當不利於整合醫療照護和專案管理的發展。目前官方尚未研擬出具體改善方法,希望外界可以提出方案。 (三)會計資料的揭露以存取報告代替 在當事人申請下,受規範對象或其商業夥伴應提供近六年內與PHI相關的會計資料。然而,許多受規範對象的系統無法分離出應提供給當事人的部分,只好提供整份會計資料,因而造成龐大負擔。官方擬修法,只提供當事人「存取報告」(Access Report),該報告會載明誰曾經存取電子紀錄。 (四)隱私權行為通知(Notice of Privacy Practices) 受規範對象在許多狀況下,需取得當事人隱私權行為通知的書面同意書,這次的修法希望可以減少書面同意,以利於受規範對象發展整合醫療照護。
BS 10012:2017個人資訊管理系統新版標準已發布BS 10012:2009個人資訊管理系統近期轉版,英國標準協會已於2017年3月31日發布BS 10012:2017新版標準,此次修改主要係為遵循歐盟一般資料保護規則GDPR (General Data Protection Regulation )之規定。為了讓企業組織能更有效率整合內部已導入之多項標準,新標準採用ISO/IEC附錄SL之高階架構(High Level Structure),該架構為通用於各管理系統的規範框架。 2017新版架構由原本的6章變為為10章,新架構如下: 第1章 範圍 第2章 引用規範 第3章 專有名詞與定義 第4章 組織背景 第5章 領導統御 第6章 規劃 第7章 支援 第8章 營運 第9章 績效指標 第10章 改善 新標準主要修改內容如下: 個資盤點單需增加「法規」盤點項目,且應載明個資流向(軌跡紀錄)。 風險管理架構參酌ISO 31000:2009修改。 組織增設資料保護官(Data Protection Officer, DPO)。 個資蒐集、處理及利用: (1)蒐集前須先告知當事人並取得其同意。 (2)蒐集應有必要性且最小化。 (3)兒童個資蒐集、利用須先經監護人同意。 (4)若個資利用目的為開放資料(Open data)須作去識別化。 個資必須維持正確且最新。 個資保存不超過處理目的存在必要之期限(保存期限)。 增加個資完整性與機密性要求。 預先諮詢與授權,例如:網頁有使用cookies需明確告知瀏覽者。 個資管理目標與量測,包括欲導入範圍、現況評估等有效性目標。 增添文件管理規範。 BS 10012:2009版本將於2018年5月25日廢止,公司驗證轉版的過渡期為24個月,因此2019年3月未轉版者證書失效。
歐盟提出通用型人工智慧模型的著作權管理合規措施建議歐盟提出通用型人工智慧模型的著作權管理合規措施建議 資訊工業策進會科技法律研究所 2025年07月23日 為推動以人為本且值得信賴之人工智慧(Artificial Intelligence, AI)應用,同時確保高度保護健康、安全及歐盟《基本權利憲章》所載之基本權利,包括民主、法治及環境保護,防止AI在歐盟境內造成有害影響,並依據歐盟《人工智慧法》(AI Act, AIA)第1條第1項支持創新。歐盟人工智慧辦公室(The European AI Office) 於2025年7月10日提出《人工智慧法案》關於通用型人工智慧的準則(The General-Purpose AI Code of Practice)[1],以下簡稱「GPAI實踐準則」。 該準則由辦公室擬定計劃邀集通用型人工智慧(以下簡稱GPAI)模型提供商、下游提供商、公協會、權利人、專家學者、民間團體組成工作小組,進行討論與草擬。目的在協助GPAI模型的提供者符合AIA要求其應訂定模型技術文件,提供給下游提供者,並應制定著作權政策、發布訓練內容摘要的規定。預計將自 2025 年 8 月 2 日起適用。 壹、事件摘要 歐盟GPAI實踐準則包括透明度、著作權與安全維護(Transparency, Copyright, and Safety and Security)三大章節。為證明符合AIA第53條及第55條所規定義的指導文件(guiding document),並確保GPAI提供者(providers)遵守其在《人工智慧法》下之義務,於該準則於著作權章節提供適用AIA第53條第1項(c)款規定[2]的措施建議。 該準則強調採取相關措施可以證明符合前揭定之義務,但符合歐盟著作權及相關權利法規,並不以遵守該準則為要件,而且也不會影響歐盟著作權及相關權利法規的適用與執行,其權利最終歸屬法院。而著作權人依法保留的權利,以及針對文字與資料探勘(Text and Data Mining, TDM)的例外或限制 (EU 2019/790號指令第4條第1項),仍應在合法條件下適用。 考量到一些GPAI提供者是新創企業,規模有別於一般企業,故該準則亦強調其所要求採取的是相稱措施(proportionate measures),應與提供者之規模相稱且合乎比例(commensurate and proportionate),並充分考量中小企業(SMEs),包括新創公司(startups)之利益。 貳、重點說明 該準則建議GPAI提供者,採取訂定著作權政策、合法重製、尊重權利保留、積極防止侵權、提供問責管道等五大著作權管理措施。 一、訂定、維持並實施著作權政策 為證明已符合AIA第53條第1項(c)款所負之義務,GPAI提供者針對其投放於歐盟市場之通用人工智慧模型,應制定政策以遵守歐盟著作權及相關權利法規。該準則建議提供者應將著作權章節所列措施納入於政策中,公開發布並維持最新狀態其著作權政策摘要,且在組織內部指派負責實施和監督。 二、獲取合法可存取之受著作權保護內容 GPAI提供者進行 EU 2019/790號指令第2條第2項之文字與資料探勘及訓練其通用人工智慧模型進行網際網路內容的重製並擷取時,例如使用網路爬蟲(web-crawlers)或授權他人使用網路爬蟲代其抓取(scrape)或以其他方式編譯資料,應防止或限制對作品及其他受保護標的物之未經授權行為,特別是應尊重訂閱模式(subscription models)或付費牆(paywalls)所施加之任何技術性拒絕或限制存取。而且在進行網路爬取時,應排除歐盟認定為持續且重複大規模商業侵犯著作權及相關權利之網站。 三、識別並遵守權利人的權利保留 GPAI提供者文字與資料探勘及訓練其通用人工智慧模型,其網路爬蟲應識別並遵守EU 2019/790號指第4條第3項的機器可讀(machine-readable)權利保留[3],讀取並遵循機器人排除協議(Robot Exclusion Protocol, robots.txt)。 該協議包括任何經網際網路工程任務組(Internet Engineering Task Force,IETF)證明技術上可行且可由AI提供者和內容提供者(包括權利人)實施之版本,或經國際或歐洲標準化組織採納透過基於資產(asset-based)或基於位置(location-based)之詮釋資料(metadata)等其他方式的機器可讀協議。亦包括通常係透過在歐盟層級經由權利人、AI提供者及其他相關利害關係人參與討論所達成共識的識別方案。 GPAI提供者亦應透過公開該等資訊並提供受影響權利人可在該等資訊更新時自動獲得通知的適當措施,使受影響之權利人能夠取得相關資訊,包括所用的網路爬蟲、所採識別並遵守權利保留之措施。 四、降低著作權侵權輸出之風險 為降低整合GPAI模型的下游人工智慧系統(downstream AI system),生成可能侵害著作權或相關權利的作品或其他標的物GPAI提供者應實施適當且合乎比例之技術保障措施,防止其模型生成以侵權方式重製受歐盟著作權及相關權利法規保護之訓練內容。;同時,在使用政策、條款與條件或其他類似文件中禁止模型用於著作權侵權目的。對於以自由及開源授權(free and open source licenses)發布之GPAI模型,應在隨附文件中請使用者注意禁止模型用於著作權侵權用途。無論是將模型整合至其自身的人工智慧系統,或係依據契約關係提供給他人。 五、提供聯繫受理管道 GPAI提供者應提供與受影響權利人進行連繫的管道與資訊,讓受影響之權利人及其代理人(包括集體管理組織(collective management organizations))以電子方式進行投訴。同時,勤勉、非任意地並在合理時間內處理投訴,除非投訴明顯無根據,或已對同一權利人提出之相同投訴作出回應。 參、事件評析 美國先前於2025年6月23日曾由加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出AI訓練行為可主張合理使用的簡易裁決(summary judgment)[4]。但法官仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定,並不支持盜版一本本來可以在書店購買的書籍對於創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。 這次歐盟的準則更明確指出,GPAI提供者進行文字與資料探勘及訓練其通用人工智慧模型,以網路爬蟲(web-crawlers)進行網際網路內容的擷取,應尊重訂閱模式(subscription models)或付費牆(paywalls)所採取的技術性拒絕或限制存取。而且在進行網路內容爬取時,應排除歐盟認定為持續且重複大規模商業侵犯著作權及相關權利之網站,即訓練資料的取得必須是合法。而且必須積極使用可識別並遵守機器人排除協議(Robot Exclusion Protocol, robots.txt)的技術,更應透過公開該等資訊、提供受影響權利人可在該等資訊更新時自動獲得通知的適當措施,使受影響之權利人能夠及時知悉所用網路爬蟲、所採尊重權利保留之措施。 雖然前揭美國法院案件正在進行審理,但顯然與歐盟的GPAI實踐準則及美國著作權局的合理使用立場[5]一樣,均不認同迴避權利保護施、自盜版網站取得的資料之情況。我國日前發生七法與法源公司之間的著作權訴訟,七法以網路爬蟲爬取法源公司於使用條款限制存取的資料,並非技術創新撞上不合時宜的舊有法律框架,而是創新應用仍應在合理保護權利的前提下進行。 歐盟GPAI實踐準則所揭示的政策制訂、尊重權利保留、積極防止侵權、提供有效且給予合理回應的問責管道等AIA合規要求,已提示GPAI的開發、服務提供,應如何透過公開、揭露措施來配套降低科技創新應用過程對既有權利的影響,也指引其應建立的內部管理與外部溝通重點。對於開發、運用GPAI對外提供服務的企業而言,在爭執訓練資料應有合法空間的同時,或許應該思考是否應先採取歐盟GPAI實踐準則所建議的措施,以尊重既有權利的態度,積極降低權利人的疑慮,始有助於形成互利的合法利用空間。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai。(最後閱覽日:2025/07/21) [2]該條款要求將通用人工智慧模型投放於歐盟市場(Union market)之提供者,必須制定政策以遵守歐盟著作權及相關權利法規,特別是透過最先進之技術,識別並遵守權利人依據《第2019/790號指令》(Directive (EU) 2019/790)第4條第3項所表達之權利保留。 [3]指不接受其著作被用於文字與資料探勘目的之利用。 [4]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [5]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。