經過了一整年向各界諮詢與彙整各方意見後,美國國家衛生研究院(NIH)於今年8月底,公布其所資助之GWAS基因型與表現型數據資料庫(genotype-phenotype datasets)之分享近用方針。此方針希望在保障研究參與者的個人隱私前提下,協助科學研究社群取得相關基因數據資料。GWAS數據資料對科學有顯著的幫助,並具有龐大的潛在公共利益,然而,提供個人的基因型與表現型資料進行科學研究,涉及個人隱私與秘密之保護,故具有高度的敏感性而受到大眾關切。
因此,NIH在訂定這項方針時,為了搜集各方意見,首先於去年5月,宣布計畫更新GWAS的數據資料分享政策,後於去年8月公開徵詢大眾對方針之意見,次又依據所蒐集之各方意見,於去年12月針對此分享政策舉辦會議進行討論,根據這些討論所形成之共識,併同NIH內部討論之結果,最後形成此項分享政策。
方針中指出,如何在促進科學研究之目的,與保護相關參與人的權利間取得平衡,是相當重要的議題,故本方針分別對研究人員近用之程序、基因數據資料的處理與參與者權利之保護進行詳細規範。舉例來說,本方針要求欲近用資料庫的研究人員,提供其研究必須使用此資料庫的書面說明資料;另外也會對所有存放在資料庫的數據資料進行去個人化處理,使該項資訊無法再以技術判別,並使用隨機方法加密,以確保參與者的隱私與保密資料不遭外洩。根據NIH表示,此方針雖然僅是對GWAS數據資料庫的近用作規範,但未來亦有意將其作為近用其他類似資料庫的規範參考架構。
本文為「經濟部產業技術司科技專案成果」
中國大陸近年致力發展其國內技術研究產業,但在基礎研究經費申請制度上,長期存在一些結構問題,如在科研資助、實施和成果傳播三個階段。故自2017年起,中國大陸陸續修正關於科研經費制度,以使科技研究人員得以順利進行科研項目。截至目前,依中國大陸國發〔2018〕25號文為基準,江蘇省推出《關於深化科技體制機制改革推動高品質發展若干政策》(下簡稱『江蘇科技改革30條』),並出台完整的實用手冊 。 此次江蘇科技改革30條,明確落實中央對科研經費鬆綁及對科研結果獎勵與容錯的改革措施。在科研經費可直接列支項目的直接預算,如設備費、材料費等,從原本九個項目改合併為五個項目,科目經費支出將不再受比例限制;另在無法直接羅列預算項目的間接預算上,如績效支出等費用則精簡列支項目,提高間接費用核定比例。在科研結果獎勵與容錯改革上,建立原創成果獎勵機制、創新補償機制、援助機制及免責機制。 中國大陸科研經費長期採用嚴格預算制,直接預算需按照法律規範羅列,然間接預算部分常使研究人員因不知如何羅列,而導致研究經費中斷或減少。對於較易失敗的基礎研究上,研究人員則擔心在階段性考核中因錯誤致使研發經費無法取得,進而將錯就錯,謊報研究成果。此次江蘇科技改革30條修正,解決了上述科研經費制度的部分問題,並具體規範了實務上的操作。然各部會間如何解決關於監管經費結餘規範之法律衝突,及科研成果容錯機制之評價,仍待後續觀察。
<開原碼條例>建置醫療資源共享架構UCLA醫學中心以開放原始碼軟體Zope建置資訊系統,展開一項稱為「治療成效開放式架構」(OIO, Open Infrastructure for Outcomes) 的計畫,構築起未來醫療資訊系統的新基石。讓治療成效的資訊,能在一個共通的平台架構上進行資源分享。 長期以來,醫療資訊系統面臨的挑戰主要來自於下列三個面向:一、如何讓資訊系統提供令人滿意的服務功能,以取代將醫療記錄登載在紙張上的傳統方式。二、資訊系統的需求經常會改變,如何快速因應系統的改變需求。三、如何與其他醫療團隊夥伴,共同分享資料與工具。 OIO計劃透過資訊共享可加速醫療研究。開放式架構計畫的主要目的,並不是用來要求臨床工作者與醫療研究中心分享病歷資料,而是提供一個分享管理工具的機制,讓使用者能夠利用這些管理工具,進行資料的收集與分析,並和特定的診療研究人員進行溝通,而透過系統安全的機制,在過程當中並不會讓其他人得知資料內容。不過,如果有人想要進行管理工具或資料的進一步加值利用,僅需額外投入相當小的成本。 另外, 開放式架構計畫的設計極具彈性,除了目前所專注的治療成效資訊統計之外,其系統概念也可以用來管理客戶資訊、進銷存資訊、會計資訊等。整個系統開發環境是針對使用者而設計,而非程式人員,並且以網頁應用程式來實作,力求操作的便利性,目的之一是讓使用者能夠動手創造出自己所需的表格資料。另一方面,設計上也面對來自於法律與技術層面的挑戰,例如取得病患的同意及對系統的信任感,促使這套系統在實作時,必須能夠提供高度的修改彈性與安全性。 由於 OIO 在設計上,包含低成本、高效益、使用者導向、架構具有彈性等特色,並以開放源碼開發模式來鼓勵使用者測試及提供回饋意見,目前的應用效果持續擴大中。
醫療物聯網(The Internet of Medical Things, IoMT)醫療物聯網(The Internet of Medical Things, IoMT)之意義為可通過網路,與其它使用者或其它裝置收集與交換資料之裝置,其可被用來讓醫師更即時地瞭解病患之狀況。 就運用的實例而言,於診斷方面,可利用裝置來連續性地收集關鍵之醫學參數,諸如血液生化檢驗數值、血壓、大腦活動和疼痛程度等等,而可幫助檢測疾病發作或活動的早期跡象,從而改善反應。於療養方面,由於患者的手術後恢復時間是整個成本花費之重要部分,故縮短療養時間是減少成本之重要要素。可利用穿戴式感測器來幫助運動、遠端監控,追蹤各種關鍵指標,警示護理人員及時作出回應,並可與遠距醫療相結合,使加速恢復更加容易。於長期護理方面,可藉由裝置之測量與監控來避免不良結果與延長之恢復期。 由於機器學習和人工智慧之共生性增長,醫療物聯網之價值正在增強。於處理來自於感測器醫療裝置之大量連續資訊流時,資料分析和機器學習可更快地提供可據以執行之結論以幫助治療過程。惟醫療物聯網亦可能面臨安全與標準化之挑戰。由於醫療保健的資料是駭客的主要目標,任何與網路連接之設備都存在安全性風險。此外,隨著相關裝置被廣泛地運用,即需要標準化以便利裝置之間的通訊,製造商和監管機構皆需尋找方法來確保裝置可在各種平台上安全地通訊。