經過了一整年向各界諮詢與彙整各方意見後,美國國家衛生研究院(NIH)於今年8月底,公布其所資助之GWAS基因型與表現型數據資料庫(genotype-phenotype datasets)之分享近用方針。此方針希望在保障研究參與者的個人隱私前提下,協助科學研究社群取得相關基因數據資料。GWAS數據資料對科學有顯著的幫助,並具有龐大的潛在公共利益,然而,提供個人的基因型與表現型資料進行科學研究,涉及個人隱私與秘密之保護,故具有高度的敏感性而受到大眾關切。
因此,NIH在訂定這項方針時,為了搜集各方意見,首先於去年5月,宣布計畫更新GWAS的數據資料分享政策,後於去年8月公開徵詢大眾對方針之意見,次又依據所蒐集之各方意見,於去年12月針對此分享政策舉辦會議進行討論,根據這些討論所形成之共識,併同NIH內部討論之結果,最後形成此項分享政策。
方針中指出,如何在促進科學研究之目的,與保護相關參與人的權利間取得平衡,是相當重要的議題,故本方針分別對研究人員近用之程序、基因數據資料的處理與參與者權利之保護進行詳細規範。舉例來說,本方針要求欲近用資料庫的研究人員,提供其研究必須使用此資料庫的書面說明資料;另外也會對所有存放在資料庫的數據資料進行去個人化處理,使該項資訊無法再以技術判別,並使用隨機方法加密,以確保參與者的隱私與保密資料不遭外洩。根據NIH表示,此方針雖然僅是對GWAS數據資料庫的近用作規範,但未來亦有意將其作為近用其他類似資料庫的規範參考架構。
本文為「經濟部產業技術司科技專案成果」
日本國會於2021年5月12日,通過由内閣官房資通訊技術總合戰略室提出之數位社會形成基本法(デジタル社会形成基本法)。數位社會之形成,將有助於提升國際競爭力與國民便利性,因應少子化、高齡化與其他重要課題,本法之立法目的係為推動數位社會形成,使日本國內經濟健全發展,幫助國民幸福之實現。 本法之重點概如下述: 數位社會之定義係指藉由先進資通訊技術,適當有效活用各式各樣大量之電磁紀錄資訊,使各領域均得創新蓬勃發展之社會。 數位社會形成之理念係為了使國民生活能切實感受到寬裕和富足,實現國民得安全安心生活之社會,降低數位落差,並確保在數位社會下,個人與法人權利以及其他法律所保護之利益。 國家須制定數位社會形成之政策,具體包含確保高度資訊通訊網路與資通訊技術之可及性、整合國家與地方自治團體資訊系統、使國民得活用國家與地方自治團體之資訊、建立公部門基礎資訊資料庫、確保資通安全等。 為形成數位社會,明定國家、地方政府及企業之相關責任義務。 依數位廳設置法設置由內閣管轄之數位廳,並制定數位社會形成相關之重點計畫。 廢止高度資通訊網路社會形成基本法(IT基本法),以數位社會形成基本法為新資通訊技術戰略。
食品標示 美國新制上路隨著食物過敏與過胖等健康問題愈來愈受重視,美國FDA(Food and Drug Administration, 食品暨藥物管理局)規定從2006年1月1日起,食品製造商必須在食品標示上揭示產品中八種主要過敏原與反式脂肪(trans fat)含量,並且必須加強揭示卡路里含量、說明整個包裝所含的養分。 依據此項新規定,廠商必須在食品標籤上以簡易的文字,標示八種容易造成過敏的過敏原,包括核果(杏仁、胡桃、大胡桃)、牛奶、蛋類、魚類、甲殼綱蝦蟹、花生、大豆與小麥。至於反式脂肪,又稱為轉化脂肪或反脂肪,是不飽和脂肪酸的一種,它會刺激人體內低密度脂蛋白(LDL)的增加,進而使低密度蛋白膽固醇(LDL-C)的量增加。LDL-C又被稱為『壞膽固醇』或『不好的膽固醇』,它會間接刺激膽固醇升高,增加罹患心臟血管疾病的風險。過去一直沒有決定每人每天攝取量標準,因此在商品包裝上的營養成分表(Nutrition Facts Table)一直都沒有列出反式脂肪含量,但是新制上路後,在包裝標籤上面也必須列出反式脂肪含量。 在消費者越來越重視健康問題之趨勢下,未來如何製造反型脂肪低或零含量的食用加工油脂產品,相信會是相關業者所面臨的新挑戰。
英國衛生部提出健康照護科技行為準則,以增進資訊安全以及新技術操作品質英國近來透過電子醫療紀錄的應用,以智慧演算法(intelligent algorithms)開發結合數位技術的創新醫療科技,這些成果多是以國民健保署(National Health Service, NHS)的資料做為基礎,因此關於資訊保障等議題也開始受到政府之重視。 2018年9月5日,英國衛生部(Department of Health and Social Care)在NHS健康與護理創新博覽會(NHS Health and Care Innovation Expo Conference 2018)中公布「以資料導向的健康照護科技之行為準則」(Code of Conduct for Data-driven Health and Care Technology)。此準則主要鼓勵研發公司在設計產品時,將患者的資訊安全以及新技術的操作品質列入考量。 此行為準則的目的主要在於改善整體研發環境,內容包含十項原則,分別為:界定使用者、界定價值(value proposition)、對使用的資料保持合理(fair)、透明(transparent)以及當責(accountable)的立場、符合一般資料保護規則(General Data Protection Regulation, GDPR)的資料最小化原則(data minimisation principle)、利用公開之標準、公開被使用的資料以及演算法的極限、在設計中內建合適的安全性設定、界定商業策略、展示技術使用上的有效性、以及公開演算法的類型、開發原因、與操作過程的監控方式。 官方期望接下來能廣納相關人員的建議,以增進此指引在產業運作上的適用性,並預期於2018年12月公布更新的版本。
美國「人工智慧應用管制指引」美國白宮科學與技術政策辦公室(The White House’s Office of Science and Technology Policy , OSTP)於2020年1月9日發布「人工智慧應用管制指引」(Guidance for Regulation of Artificial Intelligence Application),為美國政府機關起草人工智慧規範並進行管制時提供指引,該指引內要求各機關之規範應遵循以下10項人工智慧原則: 一.公眾對AI之信任:政府對AI之管制或其他措施應促進AI之可靠性、健全性,且於應用上應具備可信性。 二.公共參與:政府應提供機會讓利害關係人參與AI管制規範立法程序。 三.科學實證與資訊品質:科學實證與資訊品質:政府機關發展AI之相關技術資訊,應透過公開且可驗證之方式提供給大眾參考,以提高大眾對AI之信任與協助政策制定。 四.風險分析與管理:應採取以風險為基礎之分析評估方法,確認哪些風險係可接受之風險,或那些風險代表無法接受之損害或所失利易大於預期利益。 五.利益與成本:政府於擬定相關規範時,應小心評估AI對於整體社會之利益,與預期外之效果。 六.彈性:法規應持續滾動檢視與調修以因應AI之創新應用。 七.公平且無歧視:政府應針對AI之應用與決策,考量公平與無歧視相關議題。 八.揭露與透明:透明度與揭露程序之建立可提升公眾對AI應用之信任。 九.安全:政府應特別注意AI系統內所儲存或傳輸資訊之安全與相關安全維護控制措施。 十.跨機關合作:政府各部會或機構間應相互合作與分享經驗,以確保AI相關政策之一致性與可預測性。