NIH公布最新GWAS基因型與表現型數據資料庫分享近用方針

  經過了一整年向各界諮詢與彙整各方意見後,美國國家衛生研究院(NIH)於今年8月底,公布其所資助之GWAS基因型與表現型數據資料庫(genotype-phenotype datasets)之分享近用方針。此方針希望在保障研究參與者的個人隱私前提下,協助科學研究社群取得相關基因數據資料。GWAS數據資料對科學有顯著的幫助,並具有龐大的潛在公共利益,然而,提供個人的基因型與表現型資料進行科學研究,涉及個人隱私與秘密之保護,故具有高度的敏感性而受到大眾關切。

 

  因此,NIH在訂定這項方針時,為了搜集各方意見,首先於去年5月,宣布計畫更新GWAS的數據資料分享政策,後於去年8月公開徵詢大眾對方針之意見,次又依據所蒐集之各方意見,於去年12月針對此分享政策舉辦會議進行討論,根據這些討論所形成之共識,併同NIH內部討論之結果,最後形成此項分享政策。

 

  方針中指出,如何在促進科學研究之目的,與保護相關參與人的權利間取得平衡,是相當重要的議題,故本方針分別對研究人員近用之程序、基因數據資料的處理與參與者權利之保護進行詳細規範。舉例來說,本方針要求欲近用資料庫的研究人員,提供其研究必須使用此資料庫的書面說明資料;另外也會對所有存放在資料庫的數據資料進行去個人化處理,使該項資訊無法再以技術判別,並使用隨機方法加密,以確保參與者的隱私與保密資料不遭外洩。根據NIH表示,此方針雖然僅是對GWAS數據資料庫的近用作規範,但未來亦有意將其作為近用其他類似資料庫的規範參考架構。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ NIH公布最新GWAS基因型與表現型數據資料庫分享近用方針, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2365&no=64&tp=1 (最後瀏覽日:2026/02/02)
引註此篇文章
你可能還會想看
中國大陸於2016年3月25日起一個月內,對外徵求各界就其「互聯網域名管理辦法(修訂徵求意見稿)」之意見

  中國大陸工業和信息化部於2016年3月25日草擬「互聯網域名管理辦法(修訂徵求意見稿)」,並對外徵求相關意見至本年4月25日止。   該部曾於2004年11月5日公布互聯網絡域名管理辦法,然因隨著網際網路的發展,先前相關規範已不符時宜。新修訂之「互聯網域名管理辦法(修訂徵求意見稿)」計有六章,共56條條文。其中包含總則、域名管理、域名服務、監督檢查、罰則、及附則等規範內容。   本次修訂的重點在於中國大陸希冀建立其境內之域名暨相關服務管理體系,在第3條即開宗明義規定,中國大陸工業和信息化部對全國的域名服務實施監督管理;第5條亦規定,互聯網域名體系由工業和信息化部公告。且該管理辦法明定「.CN」、「.中國」屬於頂級域名,相關服務必須由設於中國大陸境內,且具備一定法定要件者始可提出申請。   此外,本次修法也強化其政府對域名管理的力度,如該管理辦法第4條規定,各省、自治區、直轄市通信管理局負責對本行政區域內的域名服務進行監督管理。又依第9條規定,在中國大陸境內設立域名伺服器及伺服器運行機構、域名註冊管理機構和域名註冊服務機構等,都要取得工業和信息化部,或是各省、自治區、直轄市通信管理局的許可。   因此,不論何業者如欲使用中國大陸相關域名服務或進行伺服器營運等業務,都在必須在其境內註冊、接受其主管機關之管理,且違反者依第48條以下之相關規定,將可能被處以罰款、公告違法情事,或限期改正等。

演算法歧視將適用於《紐澤西州反歧視法》

2025年1月9日美國紐澤西州檢查總長與民權部(Division of Civil Rights, DCR)聯合發布「演算法歧視指引」(Guidance on Algorithmic Discrimination and the New Jersey Law Against Discrimination),指出《紐澤西州反歧視法》(the New Jersey Law Against Discrimination, LAD)亦適用於基於演算法所衍生的歧視。 隨著AI技術日趨成熟,社會各領域已大量導入自動化決策工具,雖然它們能提高決策效率但也增加了歧視發生之風險。指引的目的在於闡述自動化決策工具在AI設計、訓練或部署階段可能潛藏的歧視風險,亦列舉出在各類商業實務情境中常見的自動化決策工具,並說明它們可能會如何產生演算法歧視。以下分別說明《紐澤西州反歧視法》適用範圍,以及與演算法歧視有關的行為樣態。 一、《紐澤西州反歧視法》之適用主體及適用客體 《紐澤西州反歧視法》禁止在就業、住房及公共場所等領域所發生的一切歧視行為,其適用主體相當廣泛,包含但不限於下列對象:雇主、勞工組織、就業仲介機構、房東、房地產經紀人、公共場所之經營或管理者、以及任何教唆或協助歧視行為之個人;而該法之適用客體亦有明確定義,為具有受保護特徵(如性別、族裔、身心障礙等)之自然人或法人。 此外指引特別說明,即便適用主體無意歧視、或其所使用之自動化決策工具係由第三方所開發,只要發生歧視行為依然違反《紐澤西州反歧視法》。這是因為《紐澤西州反歧視法》係針對歧視所帶來的影響進行規範,儘管無意歧視,其所帶來的影響並不一定比故意歧視還要輕微。 二、 歧視行為的三種樣態 1.差別待遇歧視 差別待遇歧視係指適用主體基於受保護特徵而對適用客體施予不同對待。舉例而言,若房東使用自動化決策工具來評估黑人潛在租戶,但不評估其他族裔的潛在租戶,則會因為其選擇性使用自動化決策工具而構成歧視。 2.差別影響歧視 差別影響歧視係指適用主體的政策或行為對適用客體造成不成比例的負面影響,且該政策或行為未能證明具有正當性、非歧視性、或不存在較少歧視性的替代方案,則該政策或行為構成歧視。例如,某商店利用臉部辨識技術來偵測過去曾有偷竊紀錄的顧客,但該系統對配戴宗教頭巾的顧客較容易產生誤判,此亦可能構成歧視。 3.未提供合理調整 合理調整係指身心障礙者、宗教信仰者、懷孕者以及哺乳者,在不會對適用主體造成過度負擔的前提下,得向其提出合理請求,以符合自身的特殊需求。以身心障礙員工為例,若雇主使用了自動化決策工具來評估員工的工作表現(例如監測員工的休息時間是否過長),在未考量合理調整的情況下,該工具可能會過度針對身心障礙員工進而構成歧視。 為減少演算法歧視發生頻率,「演算法歧視指引」特別闡述自動化決策工具可能會出現的歧視行為及歧視樣態。此份指引的另一個意義在於,縱使目前紐澤西州並沒有一部監管AI的專法,但仍可以利用現行的法律去處理AI帶來的種種問題,以利在既有的法律架構內擴充法律的解釋來回應新科技的挑戰,並達到實質管制AI的效果。

「巨量資料應用」

  當工業的製造生產過程經過一連串自動化、產量化以及全球化之變革歷程之後,智慧工廠的發展已經成為未來各國的重點目標。生產力4.0的設計中,巨量資料(Big Data)是重要的一環,以製造業為例,傳統上將製造生產取得的數據僅用於追蹤目的使用,鮮少做為改善整體操作流程的基礎,但在生產力4.0推進之後,則轉變為如何藉由巨量資料來提升生的效率、利用多元資源的集中化與分類處理,並經過分析取得改善行動方式,使生產最佳化,再結合訂單需求預期分析,依市場變化調整製造產量,達成本控制效果。   在我國104年9月公布之「2015行政院產力4.0科技發展方案」,亦提及智慧機械、智慧聯網、巨量資料、雲端運作等技術開發,使製造業、商業服務業、農業產品服務等,提升其附加價值。除此之外,經濟部積極規劃佈建巨量資料自主技術研發能力並且促成投資,落實應用產業智慧化與巨量資料產業化之目標。然而,巨量資料的應用因涉及大量的資料蒐集與利用,因此,未來應著重於如何將資料去辨識化,顧及隱私與個人資料之保護。目前,針對此部分,法務部將研擬個人資料保護法修正案,制訂巨量資料配套法規。

德、法、盧森堡三國推動跨國境數位測試場域(Digitalen Testfeld))「自動化與聯網駕駛」計畫測試應用

  德國,法國和盧森堡共同推動「數位測試場」:自動化與聯網駕駛之跨國境測試。三國交通部門部長在2017年9月15日法蘭克福國際車展中決定擴大測試場域的範圍。令自動駕駛的測試場域,現在擴及到三國,並進行跨國界的測試。   三方「數位測試場域」推動的目的在於將科技從實驗室帶到跨國境的實地測試。「行動4.0是邁向歐洲單一市場的一個重要里程碑」,德國交通部長希望「自動駕駛領域是由歐洲來主導的市場」。並由德、法與盧森堡共同簽署三邊「數位測試場域」協議。   二月初同意的「數位測試場域」,是德法在2016年9月開始執行的「法德電動與數位方案」計畫跨國界測試自動駕駛的一部分。以共同合作,兩國希望推動電動車和自動駕駛領域的創新。如今又加入第三個國家:盧森堡。   目前,測試場域的選擇,從德國薩蘭邦梅爾茲,經過薩爾路易和薩爾布呂肯,最後到法國梅斯。此次,將盧森堡的貝唐堡設置的測試車道納入成為一個跨越三個國家的車道測試圈。   計畫所進行測試著重以下應用:車間通信(車對車)和與透過LTE/5g等行動通訊信號與基礎設施通訊;自動化和聯網駕駛下的超車、切車、煞車;普及化的智慧交通引導系統與預警服務。   數位測試領域讓工業,研究和政策獲得在實際交通狀況的經驗。研究資金提供對象,聯邦政府將提供約1億歐元給測試領域的研究項目。研究測試補助重點在以下領域:駕駛人和車輛之間的相互作用;交通管理和規劃;聯網與資料管理;社會層面。

TOP