歐盟網路暨資訊安全局於2017年12月7日發布「重要基礎設施資訊安全培訓需求盤點報告」(Stocktaking of information security training needs in critical sectors)之文件,點出各重要基礎設施之「電腦安全事件反應小組」(Computer Security Incident Response Teams, CISRT)所必須接受之資安訓練種類。 歐盟之網路與資訊系統安全指令(The Directive on security of network and information systems, NIS Directive)規範各成員國之重要服務營運者(operator of essential service)必須確認出哪些服務於維繫社會與經濟活動上具備重要性。被認定具備重要性之部門如下:能源、運輸、銀行業、金融市場基礎設施、健康照護部門、飲用水供應與分配、數位基礎設施。 此份報告指出,該重要性部門之資安等級需求並不盡相同,因此導致各部門面對資安事件之準備無法相提並論。例如,能源產業會用到SCADA系統,而金融市場基礎設施則普遍沒有相關需求。而由於NIS指令將上述七種部門列為資訊安全維護最高層級,故此份報告目的係確認該部門當前的處境,並與現階段可取得之網路安全訓練對照,進一步具體檢視各重要部門是否有其他額外的網路安全訓練需求。 我國行政院於民國106年4月公布之資通安全管理法草案要求關鍵基礎設施提供者應訂定、修正、實施資通安全維護計畫,並向中央目的事業主管機關或直轄市、縣(市)政府提出該計畫之實施情形,在未來實際落實各重要性設施之資安維護以及資安小組訓練時,須意識到各重要性設施之資訊安全需求差異性,及相關人員必須針對不同單位而受不同之訓練。
德國聯邦內政部對歐盟部長會議「資料保護基本規則」(Datenschutz-Grundverordnung)發表意見書,並提出修法建議德國聯邦內政部資料保護與資訊自由委員會於2015年8月15日針對歐盟部長會議於6月15日所確立對歐盟資料保護基本規則(Datenschutz-Grundverordnung)的基本立場,若依該立場則(1)資料處理目的之變更理由將變得更寬泛(2)對資訊保有機構所提出的申請程序以有償為原則(3)蒐集個人資料應遵循之規範過於簡略等,該委員會提出批評與建議。 該委員會會議認為有必要改進歐盟「資料保護基本規則」,令其更周延,更呼籲對資料保護基本規則的修正,應循以下重點及原則進行: 1.資訊節約原則應該堅持 多年來在德國法已確立的資訊節約原則(Datensparsamkeit)和資訊避免原則(Datenvermeidung),應予維持。因此資料保護基本規則中,須清楚詳盡地規定節約原則和資訊避免原則。 2.目的明確性原則的要求不能退縮 目的明確性原則(der Grundsatz der Zweckbindung)之功能,係為資料處理之透明性和可預見性,該原則亦強化了當事人的資訊自主權,使其得以信賴個人資料之處理,僅限於所申請之目的內進行。 故若依理事會建議之規範,使資料處理目的之變更,得以更寬泛的理由進行,將背棄歐盟基本權利憲章中之目的明確性原則。 3.即令個人同意書亦不得拋棄資訊主權 資訊自決權,意謂原則上個人可以用同意的方式,決定個人資訊的使用和拋棄。但即使有清楚明確的意思表示,該同意亦僅係保障資訊主權的重要因素之一。另就同意書而言,若如歐盟部長理事會所建議者,只需清楚明確即可,則這種方式於保護上是不夠充分的。 4.個人資料建檔必須有效地限制 該會議重申,嚴格規範對個人資料的蒐集有其必要性。為個人檔案之整合與充分使用設置嚴格的界限,現有規定太過簡略而遭到批評。 5.有效的資訊保護需要歐盟層級的企業與官署的資料保護專員 對於資訊保護監督的有效性,在德國已確立之官方與私人企業的資訊保護專員制度係重要之一環。應致力於歐盟層級公/私機構資訊保護專員制度在整個歐洲的推動。 6. 資訊傳輸第三國官署和法院需要更嚴格的監督 近期的隱私醜聞之後,目前亟需對歐洲公民個人資料給予更妥善的保護,以對抗來自第三國的機構。此意見書贊同歐盟議會的建議,即以第三國法院的判決和行政機關的決議,要求對個人資訊的披露,在歐盟之中僅能基於國際公約中機關互助和法律協助之規定,原則上予以承認與執行。
新加坡科技與研究局針對未來工廠提出研究規劃及方向新加坡科技與研究局(Agency for Science, Technology and Research)於2017年7月26日提出未來工廠(Toward the factories of the future)概念及相關研究方向,自動化(Automation)、機器人(robotics)、先進電腦輔助設計(advanced computer-aided design)、感測和診斷技術(sensing and diagnostic technologies)將徹底改變現代工廠,可製造的產品範圍廣泛,從微型車乃至於飛機皆可生產。積層製造(Additive Manufacturing),又稱3D列印(3D printing),可使用單一的高科技生產線來創造許多不同的產品項目,而不需要傳統大規模生產的設計限制和成本,伴隨未來高效能電腦和感測技術之進步,積層製造速度也會隨之加快。而智慧工廠(smart factories)將與物聯網(IOT)、雲端計算(cloud computing)、先進機器人(advanced robotics)、即時分析(real-time analytics)與機器學習(machine learning)等技術與積層製造技術結合,將大為提升生產速度及產量。 為加速及改善積層製造的製程,最重要的方法之一,是使用材料物理學的基本原理來模擬製造過程,而近期更引進跨學科之研究,「模擬」最終產品化學成分和機械性能的微觀結構。因積層製造是一個複雜又困難的過程,透過變化既有規則之模擬(Game-Changing simulations),若建立完成模型且模擬成功,將成為積層製造的殺手級技術。在未來的五到十年,我們將看到更多的零件從積層製造技術生產出來,而且這種技術有機會成為未來工廠的生產基礎。由於現行材料及製造流程與機器必須配合一致,些許的差異皆會生產出不同品質之產品,故未來積層製造工廠的結果穩定重現性(repeatability)和標準化(standardization),將是產品商業化的主要障礙與挑戰。