Google為了提供客製化的廣告服務,利用搜尋引擎、Youtube、Gmail及其他服務,在事前未告知並取得使用者同意的情況下,蒐集人們的資料(包括搜尋紀錄、電子郵件、第三方網站軌跡資料、位置資訊及影片觀看紀錄等)。歐洲各國隱私監管機構對此表示憂心,認為Google恐將以前所未有的規模,掌握使用者的一舉一動,紛紛投入調查工作,並相繼認為Google確實已經違反其內國法。 荷蘭資料保護局(Data Protection Authority, DPA)主席Jacob Kohnstamm於2014年12月15日表示,使用者有權知悉他們在某一平台輸入的資料,其他平台也可以利用它們,並要求Google在合併不同服務所取得的個人資料前,應以跳出不同視窗等方式供使用者點選,俾以取得其明示同意(unambiguous consent),僅只透過一般隱私條款,並不足以提供當事人清楚且一致的資訊(clear and consistent imformation)。 DPA希望Google不要再考驗他們的耐心,並揚言對Google處以1500萬歐元罰鍰,除非它在2015年2月底前完成改善。但面對DPA的最後通牒,Google僅回應,他們已經大幅修正了隱私權政策,很遺憾DPA仍作出這樣的決定,但他們將儘快與歐洲各國隱私監管機構就後續修訂方案進行討論。
美國國家標準與技術研究院公布物聯網設備核心網路安全基礎指南草案美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2019年8月1 日公布「安全物聯網設備之核心網路安全特徵基準(Core Cybersecurity Feature Baseline for Securable IoT Devices)」指南草案,提出供製造商參考之物聯網設備網路安全基本要素,該指南草案中提出幾項重要核心要素如下: 設備辨識:物聯網設備必須有可供辨識之相關途徑,例如產品序號或是當連接網路時有具獨特性之網路位址。 設備配置:獲得授權之使用者應可改變設備的軟體以及韌體(firmware)之配置,例如許多物聯網設備具有可改變其功能或是管理安全特性之途徑。 資料保護:物聯網設備如何保障其所儲存以及傳送之資料不被未經授權者使用,應清楚可被知悉,例如有些設備利用加密來隱蔽其儲存之資料。 合理近用之介面:設備應限制近用途徑,例如物聯網設備以及其支持之軟體應蒐集並認證嘗試近用其設備的使用者資訊,例如透過使用者名稱與密碼等。 軟體與韌體更新:設備之軟體應可透過安全且可被調整之機制進行更新,例如有些物聯網設備可自動的自其製造商取得更新資訊,並且幾乎不需要使用者特別之動作。 網路安全事件紀錄:物聯網設備應可記錄網路安全事件並且應使這些紀錄讓所有人或製造商可取得,這些紀錄可幫助使用者與開發者辨識設備之弱點以近一步修復。
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。
OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。