挪威交通部(Ministry of Transportation)甫於本月推出電子通訊法(Electronic Communication Act)修法草案,其主要針對1-5、2-12、4-14條之規定進行修正,期望透過確認主管機關對費率和爭端處理程序等事項之管轄權和財務補貼,解決歐盟(European Union;EU)和歐洲經濟區(European Economic Area;EEA)內,長期爭議不決的國際漫遊費率問題。
強調區域整合的泛歐盟經濟體(含27個EU會員國和挪威、列支敦士登、冰島3個EEA會員國),雖在貨物、人口、服務、貨幣之自由流通等,各項單一市場上的努力上相當成功,但其電信漫遊之跨國界服務,卻經常受到各界批評,主要問題即源自於居高不下的跨國漫遊費率。因歐洲地理和人口分佈稠密度甚高,居民極容易使用跨國電信服務,但卻需負擔動輒數倍的國際漫遊費用問題。近年來歐盟有意對此尋求解決之道,而挪威此次修法即為初步重要嘗試之一。
世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
我國專利法修正中設計專利與設計產業現況之調和 以色列發布人工智慧監管與道德政策以色列創新、科學及技術部(Ministry of Innovation, Science and Technology)於2023年12月17日公布以色列首個關於人工智慧的監管和道德政策,在各行各業將人工智慧作為未來發展方向的趨勢下,以多元、協作、原則、創新的理念為其導向,為了化解偏見、人類監督、可解釋性、透明度、安全、問責和隱私所帶來的衝擊,以色列整合政府部門、民間組織、學術界及私部門互相合作制定政策,以求解決人工智慧的七個挑戰,帶領以色列與國際接軌。 該人工智慧政策提出具體政策方向以制定措施,其中具有特色的三項為: 1. 軟性監管:人工智慧政策採取軟性監管制度,以OECD人工智慧原則(OECD AI Principles)為基礎,採行制定標準、監督與自律等方式促進人工智慧永續發展,注重以人為本的道德原則,強調創新、平等、可靠性、問責性。 2. 人工智慧政策協調中心(AI Policy Coordination Center):邀集專家學者成立跨部門的人工智慧政策協調中心,進行人工智慧政策研議,向政府部門監管提出建言,為人工智慧的開發使用建立風險管理,並代表國家參與國際論壇。 3. 公眾參與及國際合作:政府機關與監管機構舉辦人工智慧論壇,提出人工智慧的議題與挑戰,邀請相關人士參與討論,並積極參與國際標準制定,進行國際合作。 我國科技部在2019年邀集各領域專家學者研議提出「人工智慧科研發展指引」,強調以人為本、永續發展、多元包容為核心,以八大指引為標竿,推動人工智慧發展。我國已有跨部會溝通會議對於人工智慧法制政策進行研討,可觀察各國軟性監管措施作為我國人工智慧風險管理及產業政策參考,與國際脈動建立連結。
美國總統歐巴馬簽署通過網路安全資訊分享法案(CISA)網路安全資訊分享法案(Cybersecurity Information Sharing Act,CISA)於2015年10月27日在「參議院」通過。接著眾議院於12月18日通過1.15兆美元的綜合預算法案,並將網路安全資訊分享法案夾帶在預算案中一併通過,最後美國總統歐巴馬亦在同日簽署通過使該法案生效,讓極具爭議的網路安全資訊分享法案偷渡成功。 網路安全資訊分享法案,建立了一個自願性的網路資訊安全分享之框架,其主要內容,在讓美國民間企業遭受網路攻擊或有相關跡象時,得以分享客戶個人資訊予其他公司或美國國土安全局等相關部門,同時並讓民間企業免除向公務機關洩漏客戶個資隱私等相關之法律責任。該法案目的係期盼藉由提高網路攻擊訊息共享度來改善網路安全問題。 該法案通過引發各界譁然。修正後的網路安全資訊分享法案去掉多數保護隱私權之條款,諸如分享客戶資訊時不用再遮掉無關的個人資訊、不再禁止政府利用這些個人資訊進行監控。 美國媒體批評該法案的通過是政府最可恥荒謬的行為之一。就隱私權層面,批評者認為,該網路安全資訊分享法案仍與監控密切結合,未能解決客戶個人資料被大量外洩的風險。就程序面而言,一個正式的網路安全資訊分享法案似乎不應被包裹在大額綜合預算法案中通過。該法案通過後之執行情形值得繼續觀察。