蘋果電腦設計一項系統,能使個人利用數位裝置來進行點餐,未來將不用在咖啡店或是速食店排隊等候也可訂到美味餐點。
蘋果公司就此項技術已經向美國商標專利局申請專利,倘若此項專利變成產品,那蘋果公司的產品就不再只限於電腦、iPod、線上音樂收費的市場。不僅如此,蘋果將變成餐廳、咖啡店甚至是零售商與顧客間的媒介。蘋果在2007年12月20日就此項技術申請專利,在申請案中,說明人們可以利用這項系統對餐廳進行點餐,而餐廳也能利用此項系統接收訊息。未來餐廳運用此項系統後,消費者就可以藉由數位PDA、手機來進行點餐,點餐者只須在線上排隊,無須為了他們喜愛的漢堡、飲料在店裡大排長龍。
此外,此項技術不僅僅是點咖啡的工具,蘋果在去年九月宣佈與星巴克簽約,所提供的技術還包括下載音樂,使用者將可以在喝咖啡時利用i-phone下載音樂並播放,消費者可以一邊享用咖啡,一邊聽喜愛的音樂。
美國總統拜登於2024年2月28日簽署了防止特定國家存取美國人大量敏感個人資料與美國政府相關資料之第14117號行政命令(Executive Order on Preventing Access to Americans’ Bulk Sensitive Personal Data and United States Government-Related Data by Countries of Concern,E.O. No. 14117),目的是為了防止敏感個人資料與政府資料大規模轉移至「受關注國家」或其所涉人員,主要以「受關注國家」、「受規範對象」、「資料類型」、「禁止行為」與相關豁免規定等項目,進一步授權司法部訂定規範,而美國司法部已於2024年3月5日在〈聯邦公報〉公布行政命令之擬制法規制定預告(Advance Notice of Proposed Rulemaking,下稱ANPRM),並於公布後45日內蒐集意見,內容簡述如下: 1.受關注國家:中國(包括香港及澳門)、俄羅斯、伊朗、北韓、古巴、委內瑞拉等可能造成美國國家安全重大風險之國家。 2.受規範對象:由受關注國家所掌控之實體及具有契約關係之人或實體,或以該等國家為主要居住地之外國人等皆屬之。 3.資料類型:本次ANPRM定義了大量敏感個人資料與政府相關資料,並公布「大量」(bulk)之參考值,將受規範個人識別指標、地理位置和相關感測器數據、生物特徵識別指標、基因組資料、個人健康資料、個人金融資料等6大類資料,用以詮釋敏感個人資料;而資料涉及美國聯邦政府(含軍方)所控制之敏感位置皆屬政府相關資料。 4.禁止行為:涉及受關注國家、受規範對象以及符合上述資料類型之資料交易行為,皆被列為禁止行為,例如:透過簽訂服務或投資協議、供應或僱傭契約而進行之資料交易行為等情形,但也由於適用範圍較廣,因此訂有豁免規定,例如:美國政府為履行公務而由僱員、承包商因公務所為之資料交易行為則可受豁免。 我國作為全球重要的高科技產業供應鏈之一員,因地緣關係與部分受關注國家進行產品製造供應或貿易往來,故可能受此行政命令之影響,ANPRM未來修訂方向值得我國持續關注其後續發展。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
馬來西亞通過修正《個人資料保護法》馬來西亞個人資料保護委員會(Personal Data Protection commissioner,下稱個資保護委員會)於2023年度收受與個人資料(下稱個資)濫用、外洩相關申訴案件數量達779件,成長數量令人憂心。為確保對於個資保護規範能與國際標準發展同步,並加強個資遭洩漏時即時採取應變措施等相關政策,以解決前述憂心狀況,數位部(Ministry of Digital)於2024年7月10日提出《個人資料保護法》(Personal Data Protection Act 2010, PDPA)修正案,並於同年7月16日經下議院(Dewan Rakyat,馬來語直譯)表決通過。 本次PDPA修正重點包含: 1.設立個資保護官(data protection officer, DPO)制度:強制要求蒐集、處理、利用個資之資料控管者(data controller),及受資料控管者委託而實質處理個資之資料處理者(data processor),均需指派個資保護官。 2.擴張對於敏感性個資(sensitive personal data)定義:與個人身體、生理或行為特徵相關之技術處理所生個資(即生物辨識資料),皆屬之。 3.制訂個資外洩通報制度:強制要求發生個資外洩時須通報個資保護委員會,以及可能受到任何重大損害之個資當事人,惟對於「重大損害」尚未有明確定義。 4.導入資料可攜性:在遵守技術可行性(technical feasibility)與資料格式相容性(data format compatibility)之情境下,允許資料控管者之間在當事人要求下進行資料傳輸。 5.資料處理者的合規遵循義務:舊法僅要求資料控管者須遵守PDPA所規定的安全原則(security principle);新法則擴及要求資料處理者亦有安全原則之合規遵循義務。 6.提高罰則:舊法對於違反個資保護原則者,最高僅得處300,000馬幣和/或2年監禁;新法提高罰則最高得處1,000,000馬幣和/或最高3年監禁。 7.跨境傳輸規範修正:原則允許資料控管者將個資傳輸至馬來西亞以外,惟應採取適當措施確認及確保資料接收方保護個資之水準與馬來西亞個資法程度相當;並將跨境白名單制度調整為黑名單制度,不得傳輸至政府公布黑名單所列地區。 馬來西亞數位部本次修正PDPA,彰顯該國政府對個資保護之重視,惟關於任命個資保護官資格要求、個資外洩通報重大程度標準等細部規範,則仍須待修正案通過後,經個資保護委員會發布相關指引再行釐清。
BS 10012:2017個人資訊管理系統新版標準已發布BS 10012:2009個人資訊管理系統近期轉版,英國標準協會已於2017年3月31日發布BS 10012:2017新版標準,此次修改主要係為遵循歐盟一般資料保護規則GDPR (General Data Protection Regulation )之規定。為了讓企業組織能更有效率整合內部已導入之多項標準,新標準採用ISO/IEC附錄SL之高階架構(High Level Structure),該架構為通用於各管理系統的規範框架。 2017新版架構由原本的6章變為為10章,新架構如下: 第1章 範圍 第2章 引用規範 第3章 專有名詞與定義 第4章 組織背景 第5章 領導統御 第6章 規劃 第7章 支援 第8章 營運 第9章 績效指標 第10章 改善 新標準主要修改內容如下: 個資盤點單需增加「法規」盤點項目,且應載明個資流向(軌跡紀錄)。 風險管理架構參酌ISO 31000:2009修改。 組織增設資料保護官(Data Protection Officer, DPO)。 個資蒐集、處理及利用: (1)蒐集前須先告知當事人並取得其同意。 (2)蒐集應有必要性且最小化。 (3)兒童個資蒐集、利用須先經監護人同意。 (4)若個資利用目的為開放資料(Open data)須作去識別化。 個資必須維持正確且最新。 個資保存不超過處理目的存在必要之期限(保存期限)。 增加個資完整性與機密性要求。 預先諮詢與授權,例如:網頁有使用cookies需明確告知瀏覽者。 個資管理目標與量測,包括欲導入範圍、現況評估等有效性目標。 增添文件管理規範。 BS 10012:2009版本將於2018年5月25日廢止,公司驗證轉版的過渡期為24個月,因此2019年3月未轉版者證書失效。