中國大陸首例因在網絡遊戲中花重金組建的團隊遭遇離奇解散,導致來自多個省市的遊戲玩家聯手於河南省對網絡遊戲運營商提起訴訟。 代表玩家提出訴訟的原告在《魔域》中投入許多時間與金錢,建立「情誼無痕」軍團,最高時軍團人數達2000餘人。由於軍團的升級和日常維護開支需要眾玩家共同出力出錢,「情誼無痕」被無故被解散所影響的玩家人數眾多。 被告網龍公司主張遊戲帳號註冊時所輸入的身份證並非原告本人、服務器電腦記錄顯示有人登錄「落花有意」帳號並將「情誼無痕」軍團解散,由此可推斷該帳號曾有兩人以上使用,故不能排除該帳號曾借與朋友使用或被他人盜號使用而將軍團解散。 每法官與原被告雙方進行調解,因雙方意見分歧,最終未達成調解協議。玩家表示如果網龍公司不能給予合理的答覆,他們將聯合分佈在全國各地的其他玩家陸續不斷地起訴網龍公司。
MPAA 藉由 BT 網站伺服器記錄對 P2P(BT) 軟體用戶提起訴訟追蹤、定位、起訴,所有 P2P(BT) 軟體使用者的噩夢再次上演。全美製片業團體「美國電影協會」 ( Motion Picture Association of America ; MPAA ) 在 8 月 25 日對美國境內 286 位居民提起訴訟,成為首宗利用 P2P(BT) 網站伺服器記錄 ( server logs ) 追蹤 ( track down ) 盜版電影下載者的案例。 今年 2 月,著名 BT 網站 LokiTorrent 與 MPAA 的大戰告一段落。德州法院下令 LokiTorrent 關閉網站外,並命令 LokiTorrent 將伺服器記錄轉交給 MPAA 的調查員 ( investigator ) 。 MPAA 的發言人聲稱本月 25 日的訴訟與此事件無關,但所有人都明白 MPAA 正是憑此線索,最終找到了 P2P(BT) 用戶的行蹤。好萊塢希望藉此行動阻嚇免費下載電影的行?, MPAA 資深副總裁 John Malcom 聲稱「下載盜版電影的人要當心了,當你為著作權侵害行為時,網路上並不會有朋友站出來替你撐腰。」 儘管 P2P(BT) 軟體背負著助長盜版的惡名,但 P2P(BT) 的合法用途也在逐漸增加,例如使用 P2P(BT) 技術分發 ( distribute ) 開放原始碼軟體 ( open-source software ) ,網路瀏覽器軟體公司 Opera 即在新版的程式中內建了此種技術。 BT 技術的發明人 Bram Cohen 曾警告用戶,使用 P2P(BT) 軟體下載盜版是個蠢主意,因?軟體在設計時並未刻意隱藏用戶的識別資訊,這也是為何 MPAA 此次能憑藉著伺服器記錄對用戶提起訴訟的主要原因。
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。
美國交通部公布車輛與基礎設施間聯網指引,強化車聯網時代行車安全美國交通部(U.S. Department of Transportation)部長(時任)Anthony Foxx於2017年1月19日公布「車輛與基礎設施間聯網指引」(Vehicle-to-Infrastructure (V2I) Guidance),旨在透過加速車輛與基礎設施間通訊系統之布建,增進車聯網時代的行車安全與機動性。同時,本指引也將補充交通部於2016年12月所公布之車輛間通訊規則草案,後者最重要的目的是透過車輛間通訊技術的管理,提升駕駛人對於碰撞與潛在危險的認知以預為因應。透過車輛與基礎設施間聯網指引,交通部聯邦公路管理局(Federal Highway Administration, FHWA)將協助運輸系統的所有人與操作人進行相關技術的布建,並讓各運輸事業主管機關與收費道路管理機關,了解布建相關技術之決策所可能造成的影響,並為相關技術的未來發展與聯邦挹注資金的利用(因為多數的V2I能夠整合於既有之ITS設備或道路周邊基礎設施,因此符合聯邦對ITS的補助條件),做好準備。 車輛與基礎設施間之通訊,是車聯網環境的重要構成部分,透過硬體、軟體、韌體、以及無線通訊系統,相關資料不但能在車輛間進行動態傳輸,亦得在車輛與道路基礎設施間進行傳輸。聯邦公路管理局局長(時任)Gregory Nadeau表示:「除了增進行車安全,車輛與基礎設施間之通訊技術能提供相當大的機動性,並為整體環境帶來益處。車輛與基礎設施間之通訊與聯網,以及諸如隱私與互通性等更大的挑戰,都將由本指引作為展開全國性對話的起點。」車輛與基礎設施間聯網(V2I)可謂智慧運輸系統(Intelligent Transportation Systems, ITS)的次世代技術,其能捕捉車輛所產生的交通資料,並向車輛無線傳輸例如行車建議等的資訊,讓駕駛人能夠掌握與安全性、機動性、甚或是與整體環境相關的所有情況。 車輛與基礎設施間聯網指引的內容,目前包括聯網車輛運輸衝擊規劃初階報告(Connected Vehicle Impacts on Transportation Planning Primer)、聯網車輛運輸衝擊規劃桌上參考手冊(Connected Vehicle Impacts on Transportation Planning Desk Reference)、技術備忘錄第2號:聯網車輛規畫流程與產品及利害關係人角色與責任(Connected Vehicle Planning Processes and Products and Stakeholder Roles and Responsibilities)、技術備忘錄第3號:新型與強化型分析工具、技術、與資料之需求分析(Analysis of the Need for New and Enhanced Analysis Tools, Techniques, and Data)、技術備忘錄第6號:運輸規劃導入互聯車輛所需之技能與專業知識(Skills and Expertise Required to Incorporate Connected Vehicles into Transportation Planning)、新型與強化型分析工具、技術、與資料之需求分析:公路容量手冊簡介(Highway Capacity Manual Briefing)、新型與強化型分析工具、技術、與資料之需求分析:交通系統模擬模式簡介(Briefing for Traffic Simulation Models)、以及聯網車輛運輸衝擊規劃:社區關懷案例研究(Outreach to Planning Community)。 另外,為了讓執照核發條件透明化,相關的典範實務(best practices)也能為各政府與民間組織機關近用,以布建聯網車輛專用短程通訊(Dedicated Short Range Communications, DSRC)路邊基地台(Roadside Units, RSU)與相關服務,用以支援車輛與基礎設施間之聯網應用,亦針對執照持有人訂有指引(Guide to Licensing Dedicated Short Range Communications for Roadside Units)。