三月上旬甫於美國新奧爾良舉行的毒物學學會研討會,多數的論文將重點放在肺部暴露於奈米微粒的影響。例如來自美國太空總署休士頓太空中心的John T. James與其同僚,將奈米微粒噴入老鼠的呼吸道,於一週與三個月後再進行檢驗,結果發現儘管類似煤煙的碳奈米球狀物不會造成傷害,可是相當質量的商品化碳奈米管卻會顯著的損及肺部組織,甚至殺死幾隻老鼠。研究人員發現巨噬細胞(macrophages)會困住奈米管,不過隨之死亡。James認為研究小組所使用的劑量並不是非常不切實際,他估計在目前的美國聯邦碳吸入量法規限制下,相對於人體重量,工作人員在17天之內會吸入相等的劑量。
美國西維吉尼亞州國家職業安全與健康協會的Petia Simeonova與其同事,也觀察到接受類似劑量碳奈米管的老鼠會產生富含微粒的肺肉芽腫(granulomas),研究人員也對心臟與主動脈的粒線體DNA進行損害檢查,粒線體傷害為發生動脈硬化(atherosclerosis)的先兆。
日本鳥取大學 (Tottori University )Akinori Shimada報告了首例奈米微粒從肺部移動到血液的系列圖像,碳奈米管一接觸到老鼠肺部極細小的氣管,即湧入穿過表面細胞的微小間隙,並且鑽入毛細血管,Shimada推測此會造成凝集甚至血栓。
羅徹斯特大學Alison Elder報告兔子吸入碳奈米球之後,增大了血液凝塊的敏感性。為了模擬糟糕的都市空氣污染,研究人員給予兔子每立方米包含70微克奈米球體微粒的空氣超過三小時,再觀察發生血液凝塊的時間,結果呼吸奈米微粒的兔子,一天之內即發生血液凝塊現象。因為發生的很快,所以Alison Elder認為奈米微粒是從肺部移動進入血流,而非從肺部送出凝血劑(clotting agents )。
本文為「經濟部產業技術司科技專案成果」
Cisco於2012年2月發布預測2011至2016年全球行動數據流量將從2011年每月0.6 Exabytes上升至2016年每月10.8 Exabytes,以高達78%的年複合成長率(CAGR, Compound Annual Growth Rate)逐年攀升。根據此數據,新加坡亦預測其國內行動數據流量將以64%的年複合成長率,從2010年3.1Petabytes上升至2015年37 Petabytes。目前新加坡的電信業者為因應與日益龐大的數據流量,已著手嘗試各項商業模式,包含分級訂價(tiered pricing)、流量管理政策(traffic policy management control)、網路最佳化(network optimisation)、既有基礎建設升級(upgrading of existing infrastructure)以及採用如長期演進技術(LTE,Long Term Evolution)等新興技術和行動數據疏導策略(Mobile data offloading strategies)的發展。 另外職掌新加坡電信政策的新加坡資訊通信發展管理局(IDA Singapore),於2012年4月亦針對4G通訊系統及服務,提出頻譜重新分配之建議書,並諮詢各界之意見,以因應下階段全球移動數據領域之發展。IDA於建議書中計畫擬定以1800MHz、2.3GHz以及2.5GHz作為未來發展4G技術的主要頻段。為滿足產業所需之頻譜量,IDA預計於1800MHz頻段分別釋出2*70的對稱頻譜(paired spectrum)、於2.3GHz頻段釋出30MHz的非對稱頻譜(Unpaired Spectrum),而於2.5GHz頻段則同時釋出2*60MHz的對稱頻譜與30MHz的非對稱頻譜。除了釋出足夠頻譜外,為考量未來技術實驗以及電信業者發展全國性網路服務可能需求2*20MHz的對稱頻譜或20-30MHz的非對稱頻譜,IDA亦分別於前述三個頻段中預留2*5MHz(1800MHz)、20MHz(2.3MHz)以及於2.5MHz區段中預留2*10的對稱頻譜與20MHz的非對稱頻譜。 不過目前受到各國推崇的700MHz頻段卻未被新加坡納為現階段孕育4G技術的主要區域,同時對於900MHz是否於本次拍賣一同釋出以發展4G技術,新加坡政府仍持保留態度。對此,新加坡主要業者包括SingTel與StarHub皆已向iDA提交回覆建議書,表達此舉不符合國際未來發展趨勢並期待IDA能重新作出調整。
日本貿易振興機構設立「東南亞智財網絡」以因應日本產品仿冒問題日本貿易振興機構(Jetro)於2月21日公開表示將在3月設立「東南亞智財網絡」以作為協助在東南亞活躍的日本企業智財活動的平台。該網絡之辦事處將設在Jetro的曼谷事務所內,以支援前進東南亞的日本企業智財活動。 在目標朝向2015年區域經濟整合的東南亞國家聯盟(ASEAN)中,對日本企業來說,期待能夠在智慧財產的領域中也制定ASEAN共通的規劃,提升專利與商標等智慧財產權利取得的速度,及強化仿冒與盜版的取締效果,而各國政府也正著手擬定「ASEAN智財行動計劃2011-2015」與改善智財相關的各個議題。雖然已經可以看見各國進行協調的動作,不過迄今為止還看不到域內共通的智財制度建置,其它像是迅速取得權利、有效取締仿冒等的問題對日本企業來講也還有很多需要改善的地方。 在前述背景下,Jetro表示,將以Jetro曼谷事務所作為辦事處,在3月啟動「東南亞智財網絡」。這個網絡將作為在東南亞各主要國家日本企業智財擔任人員所結集而成的IPG(Intellectual Property Group)辦事處,協助智財保護的各種活動、流通資訊、舉辦研討會與讀書會、向當地主管機關提出建言等等,將以促進ASEAN域內設立智財共通制度及建立各國協調的智財制度作為最終目標。 「東南亞智財網絡」主要預定的活動包括,(1) 東南亞各國域內日本政府、IPG與成員間在智財領域的相互合作及資訊共享;(2)透過各國IPG等團體向東南亞及ASEAN當局交換意見與提出建言;(3)與國際智慧財產保護論壇(IIPPF)的合作。在2012年則預定將舉行以下等活動,包括3月12日在新加坡召開的啟動會議與智財研討會、7月向ASEAN智財互助事務部(AWGIPC)提出建議書、參與日本人商工會議所連合會(FJCCIA)與ASEAN祕書長的對話等等。
歐巴馬旋風之商標影響力美國總統歐巴馬在選舉前後已對於產品市場,造成一股莫大的熱潮,商人們都想藉由這股熱潮來獲得利益。可以從口號「Yes We Can」、「Change」的利用及一系列歐巴馬肖像相關產品充斥於產品貨架上得以瞭解。然而,這樣的現象,美國白宮律師正著手處理保護總統的發言權及肖像權,且在不損民眾熱情之下制定規範以進行管理。 在美國總統大選期間,已有數家美國企業向美國專利商標局 (United States Patent and Trademark Office, USPTO)提出新商標申請。1月份即有73件混合歐巴馬名字為商標之申請案,其中包括填充玩具「Bearak Obama」、「ObamaLlama」、棒棒糖「Obama」、「Obama vodka」、啤酒「Obamanator」、服飾「Obamanation」、鞋子「Obamaniac」以及「Broccoli Obama」於冷凍蔬菜,冰淇淋公司Ben Jerry’s ice提出「Yes Pecan」,甚至有出版業者提出「Obamaland」之商標申請。在歐洲也是如此,Benelux Office for Intellectual Property (BOIP) 也有二件申請案,「Obama」雜誌、音樂及「Obama」花卉種籽。目前已經有些商標申請案被USPTO駁回,如「Obama vs Osama」。 Rise & Ries之董事長Al Ries表示:「現在這股歐巴馬風潮是可以理解的,但並不會持續到永遠」。然而,美國白宮律師依舊可能會針對各個情況作判斷以最好的方式保護總統的權利,並且尊重人民使用的權力,必竟歐巴馬是大多數人的驕傲。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。