歐盟執委會委員要求行動通訊業者調降數據漫遊費用

  2008年全球行動通訊大會(Mobile World Congress)於2月11日在西班牙巴塞隆納展開,歐盟執委會負責資訊社會與媒體領域之委員 (EU commissioner for information society and media)Viviane Reding 出席大會並發表演講。在其演講中,Reding 要求歐洲之行動通訊業者降低數據漫遊之批發與零售價格,使消費者得以低廉的價格在漫遊時傳送文字簡訊或下載數據資料。Reding表示,儘管數據漫遊市場正在發展中,管制者不宜介入太深,但是,若行動通訊業者未能在7月1日前自願性地降低數據漫遊費率,則歐盟不排除採取管制措施。

 

  此一演講內容引起正反兩極反應,行動通訊業者組成之GSM協會(GSM Association)發表聲明稿指出,行動數據漫遊市場正快速發展中,且業者正致力於發展各種創新服務,此時並非管制之成熟時機,若歐盟強行管制行動數據漫遊費率,則可能會扼殺各種創新服務之發展;不過消費者團體則認為,正由於其費率不受管制,業者往往向消費者收取不合理之漫遊費用,因此消費者團體支持歐盟採取管制措施。

相關連結
※ 歐盟執委會委員要求行動通訊業者調降數據漫遊費用, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2751&no=64&tp=1 (最後瀏覽日:2026/01/25)
引註此篇文章
你可能還會想看
美國推動創新研究獎勵方案,鼓勵中小企業投入潔淨能源研發

  美國能源部今(2012)年5月宣布1千1百萬美元的預算,獎勵小型企業發展潔淨能源創新研究與科技。美國的小型企業並非以營運的領域來區分,而且必須合於美國聯邦法規(13 CFR 121)中對於小型企業的規範,另外,美國小型企業管理局(U.S. Small Business Administration,SBA)對於各種營利活動亦建立有大小區分的標準,依照不同的行業別,就員工人數或營業額的數目訂立區分標準。因為企業大小的區分,在美國政府採購契約發包的程序上極為重要,因為他們確保,為大小不等的小企業之間提供公平的競爭基準,而這些區分標準同時也適用在SBA的貸款/補助計畫以及能源部小型企業創新研究計畫(Small Business Innovation Research ,SBIR)與小型企業技術移轉計畫(Small Business Technology Transfer ,STTR)上。   能源部此次小型企業創新研究計畫是歐巴馬政府為扶持小型企業,增加美國就業機會政策的一部分,計畫內容在於,給予每個小型企業最高15萬美元的補助金,只要企業的業務致力於發展創新能源技術,製造新的工作機會,以提高美國在世界的經濟競爭力,這些獲選企業在未來兩年內,可以參加第二階段的競賽,並將有機會獲得高達2百萬美元的獎勵金,目前已有67個小型企業,總共75項創新研究計畫,包括風力渦輪機、燃料電池技術以及煤炭能源等的相關研究工作,這些獲選的小型企業遍佈全美各州。   美國政府認為,小型企業為其經濟體的主幹,提供全美二分之一的工作機會,並且在國內持續製造三分之二的新就業機會,重要的是,這些企業正在幫助美國減輕對進口石油的依賴,保護美國的環境,降低環境污染。而為了支持這些小型企業在國內經濟體所扮演的重要角色, 在能源部主責進行的SBIR計劃和STTR計劃中,持續支持科學卓越和技術創新,以達強化國家經濟的目標。

無線網路溢波盜用之法律議題初探

印度為促進新創公司發展 將不予受理軟體專利申請案

  印度「專利設計與商標管理局」(Controller General of Patents, Designs and Trademarks)於2016年2月19日發佈最新的「審查電腦相關之發明專利準則」(Guidelines for Examination of Computer Related Inventions, CRIs),決定在專利申請之審查程序中落實印度於1970年所制定的專利法(Patents Act, 1970)之意旨,未來當局將不再受理與電腦相關的軟體專利申請案。印度《專利法》第3條第k項排除本質上為數學演算法、商業方法與電腦程式運算法則等申請案之可專利性(Patentable)。該規定在印度《專利法》於2002年、2004年與2005年修法過程中,雖面臨各方利益團體試圖影響國會立法放寬法定可專利性範圍的壓力,但仍然為印度國會(Bhārat kī Sansad)所保留。   然而,印度「專利設計與商標管理局」卻於2015年8月21日發佈違反《專利法》意旨的CRIs,導致軟體專利的可專利性被實質上放寬。一般認為開放申請軟體專利的政策將會阻礙新創公司的發展,並有利於所謂「專利主張實體」(Patent Assertion Entity, PAE)藉大量軟體專利向一般公司提起訴訟或請求授權金,導致印度當局遭受國內新創軟體公司與相關非政府組織的激烈抗議。   「自由軟體法律中心」(Software Freedom Law Center, SFLC)與「印度軟體產品圓桌會議」(Indian Software Product Industry Round Table, iSPIRT)等機構即代表眾多新創公司與學術界人士上書印度「總理辦公室」(Prime Minister’s Office),請求政府對2015年8月發佈的CRIs進行檢討。SFLC等組織的積極作為,成功說服印度當局作出暫緩該高度爭議的CRIs生效之決定。代表SFLC等組織的專家表示,印度的軟體已受到《著作權法》與《營業秘密法》的足夠保障,進一步開放發明人申請軟體專利只會對該國軟體產業並無助益。   印度當局與相關團體在數個月間密集的進行研議,終於在2016年2月決定修正原先發佈的CRIs,使其回歸印度《專利法》不開放軟體專利申請的立法意旨。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP