工業局預計明年和財政部研商修改海關進口稅則,給予廠商進口國內無產製的半導體、面板設備的關鍵零組件時,免課關稅的優惠,以提升國內兩兆產業自給率,在2008年分別提升至25%和50%的水準。包括奇美、彩晶、華映等面板廠都對提高設備自給率很有興趣。工業局指出,全球面板業市場,已成為我國和韓國互相較勁的局面,韓國目前設備自給率已達40%,並計畫在2008年達到80%水準,但我國面板設備自給率目前只有12%,不但主控權掌握在外國設備廠手裡,利潤也被賺走。如果國內面板廠可以提高設備自給率,可以節省成本30%至50%,獲利將可以大幅提高。
工業局表示,由於我國半導體與平面顯示器兩兆產業在晶圓代工帶動下及筆記型電腦與LCD顯示器的大量需求下持續成長,除產值大幅成長外,在設備需求上,台灣將分別占有15%及40%以上的全球市場,國內每年設備投資總額也將高達2,000億元以上,但是卻有九成以上仰賴進口。除了以租稅減免,提高國內面板及設備業者投入設備研發、生產的誘因外,工業局明年起每年也將投入近億元的經費,以科專計畫、主導性新產品研發補助等,協助國內設備業者提升研發及生產能力。
由於我國已成為全球半導體及面板的重要生產廠商,每年進口設備金額十分龐大,工業局也將運用此優勢,吸引國外大廠來台設立研發中心或與國內設備業者合作,投資生產製程設備。為鼓勵兩兆產業中心廠使用國產設備,對使用國產設備達一定比例之廠商,工業局也將研議相關的獎勵措施。
本文為「經濟部產業技術司科技專案成果」
馬來西亞政府計劃於2018年推行就業保險計畫(Employment Insurance Scheme,EIS),為受雇人提供一個就業的社會安全網包括失業津貼和培訓支持,計畫內容: 適用範圍:典型受雇工作者。 基金管理機構: 社會安全機構(Social Security Organisation,SOCSO)。 保護內容:為被裁員工提供三個月至六個月的臨時財政援助。例如,在求職津貼下,失業人員可以獲得第一個月的假定月工資的80%,第二個月的50%,第三個月和第四個月的40%,第五個月和第六個月的30%。 保險費用:雇主必須負擔受僱人月薪之0.2%,僱員亦須繳納受僱人月薪之0.2%。繳費將根據員工的工資按固定比例計算。保費繳納之上限為收入4000令吉(Riggit Malaysia,RM)以上者,繳納的最高貢獻額為59.30令吉。 罰則:一萬元以下或兩年以下有期徒刑。 根據國際勞工組織(ILO)一項研究顯示,2011年越南失業人員中只有5%受到失業保險的保護,泰國則為25%。即使在非典型工作者較無問題出現的國家,失業人員的有效覆蓋率通常在40%到50%之間。主要原因在於,失業保險只包括典型工作者,然而亞洲較多數人為非典型工作者。 另一方面,2016年馬來西亞提高最低工資增加雇主負擔,使雇主感受到高額成本的壓力。推行就業保險計畫雇主所需承擔之成本又再次增加。這使得雇主不得不傾向選擇短期契約工作或外包工作。使得雇主減少雇用正式員工,本身待遇與福利居於弱勢的非典型工作者增加,反而使得計畫可以保護範圍縮小加深非典型工作者不平等問題。面對目前全球非典型工作者人數有快速膨脹趨勢,以及雇主捨棄高成本的雇用方式。如何立法保護或改善非典型工作者就業環境,將成為就業保險計畫另一個重要的核心議題。
英國Ofcom公佈感知無線電技術之諮詢結論英國Ofcom於2011年9月1日公佈了關於閒置頻譜、地理定位(geolocation)資料庫與感知無線電的最新諮詢結論,本次行動使英國成為歐盟中第一個宣佈感知無線電發展計畫的國家。 Ofcom自2005年「數位紅利審查報告書」(Digital Dividend Review)以來,藉多次的聲明與諮詢確立數位紅利閒置頻譜使用的三大方向: 其一,將用於enhanced Wi-Fi,相較於當前使用2.4G的Wi-Fi技術,透過原本無線電視所使用的低頻段(介於470至790MHz間)特性,可使新技術的涵蓋範圍更廣、建築穿透力更強。 其二,透過無線傳輸連結大城市與鄉村地區,以建置鄉村地區之寬頻網路。 其三、用以智慧聯網(Machine-to-Machine Communications,或譯為物聯網)。 由於相關議題在歐盟仍屬初始階段,Ofcom決定先行發展國內和諧使用設備之標準,待歐盟確立標準後,再調整規管與之一致。 有意願經營資料庫之第三方,皆須向Ofcom申請其管理、或交由可信任機構管理之網站的清單,以供感知無線電設備選擇,導入資料庫供應商之競爭。Ofcom將與複數之資料庫供應商簽訂契約或管制協議;至於申請者的最低條件、契約內容與申請費用,仍待定義與諮詢 Ofcom預計於2013年正式使用該技術;此外,依據科技進展,亦考慮回收FM廣播頻段發展感知無線電。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。