德國放寬胚胎幹細胞之研究限制,允許進口2007年5月以前所製造的胚胎幹細胞進行研究

  在德國,由於納粹的醫學實驗歷史,人類胚胎研究一向是極為敏感的議題,並且為了研究用途摧毀胚胎也有極大的倫理爭議。德國下議院於2001年立法禁止從胚胎中粹取幹細胞後,在現行法規下幹細胞研究者只可以進口2002年1月1日以前製造的胚胎幹細胞供使用。不過在科學家一再表達只有極少量的細胞株可有效提供研究的關切下,德國下議院日前以346票對228票通過幹細胞法之修正,將截止日期(cut-off date)之規定由2002年1月1日,修正為2007年5月1日,藉此放寬對人類胚胎幹細胞研究的限制。

 

  不過此次國會的修法仍引起支持與反對胚胎幹細胞研究人士的激烈爭論,支持一方表示現行截止日期的規定強烈影響德國幹細胞的研究,德國研究基金會(German Research Foundation)即強調目前全球有超過500個細胞株,但德國研究人員卻只被允許使用21個老舊且部分遭到污染的細胞株。另一方面,在德國主教的集會上,佛萊堡(Freiburg)大主教鄒立區(Robert Zollitsch)則對放寬現行限制提出警告,他表示「研究的自由不該與對生命的基本保障等量齊觀」。

 

  修法後,德國研究人員將可透過國際合作進口使用2007年5月1日以前所製造的胚胎幹細胞。這是正反雙方妥協下的結果,但是德國對於限制胚胎幹細胞研究的基本立場是否會由此開始鬆動,則仍待後續觀察。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 德國放寬胚胎幹細胞之研究限制,允許進口2007年5月以前所製造的胚胎幹細胞進行研究, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2784&no=64&tp=1 (最後瀏覽日:2026/01/14)
引註此篇文章
你可能還會想看
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

英國擬設立數位交易所,改革政府購買數位工具之方式

英國創新科技部(Department for Science, Innovation and Technology,下稱創新科技部)2025年6月7日發布消息,英國政府正在建立第一個國家數位交易所(National Digital Exchange, NDX),並預計於2026年試行,數位交易所可協助英國各政府機關可以更快速且容易地購買合適的數位工具,並期望每年節省12億英鎊(約等於新臺幣481億元)的政府支出,並賦予公務員(使用者)可對供應商進行評分。 2025年1月25日英國政府公布「數位政府現狀審查(State of digital government review)」報告,英國政府2023年於數位技術支出超過260億英鎊(約等於新台幣10,435億元),英國有數百萬人民仰賴政府機關、醫院、學校及相關機構所提供的數位服務,另報告中指出英國二級醫療機構及地方議會仍各自辦理雲端服務、網路與設備採購,因此採購時各機關錯失了與供應商議價的能力,此外僅有28%的公部門主管表示,其所在的部門有能力追蹤並確保供應商提供的技術及服務符合其價值。 國家數位交易所係由創新科技部進行審核與管理,需求機關可自國家數位交易所購買所需之數位工具,上架之數位工具除經創新科技部審核外,亦由該部會與供應商進行全國統一的價格協商,採購方可根據其實際需求透過人工智慧與供應商進行配對,藉由國家數位交易所採購數位工具,相較於需求機關自行辦理採購流程花費數月時間,可減少至幾小時,此外國家數位交易所目標於3年內將參與政府採購的中小型企業比例提升至40%。 我國數位發展部及經濟部現行亦有針對軟體、資訊服務及數位新創產品或服務辦理共同供應契約,供全國公務機關參與訂購,除可節省我國政府機關自行辦理採購案所花費時間及人力,透過複數決標的採購方式,單一產品可以有較多的供應商供機關選擇,同時提升供應商的曝光機會,以促進我國資訊產業發展。英國新設立之國家數位交易所後續制度及未來運作方向,值得持續追蹤。

歐洲央行提出7500億歐元之「緊急債券收購計畫」以因應新冠肺炎疫情

  歐洲央行(European Central Bank, ECB)於2020年3月18日提出7500億歐元之「緊急債券收購計畫」(Pandemic Emergency Purchase Programme),紓困金額占歐盟年GDP之7.3%,以協助歐盟面臨新型冠狀病毒(covoid-19)所帶來之經濟衝擊,同時也減緩再生能源產業因疫情所帶來之影響。   就此,歐洲央行總裁Christine Lagarde表示,對於紓困對象及方法,歐洲央行將採取不分產業類別自市場購買公債或私人債券之方式,以因應疫情所帶來之影響,其中也包含歐盟投資銀行(European Investment Bank, EIB)所發行之「綠色債券」(Green Bond)。又綠色債券係歐盟投資銀行於2007年所發行,又名「氣候意識債券」(Climate Awareness Bond),職是故,歐洲央行針對歐盟投資銀行綠色債券進行紓困將使再生能源產業蒙受其利。   依歐洲央行之「緊急債券收購計畫」,歐洲央行僅得自次級市場(Secondary Market)購買債券,而不得直接自初級市場(Primary Market)購買,亦即歐洲央行僅得自價證券買賣之交易市場購買債券,而不得直接購買首次出售之有價證券,此項限制,也包含歐盟投資銀行所發行之綠色債券。   以歐盟投資銀行綠色債券為例,歐洲央行之操作機制在於透過此項購買手段,提升歐盟投資銀行綠色債券之市場價格,同時讓歐盟投資銀行面對投資人時,可以享有較為優渥之議價空間,以降低歐盟投資銀行未來所要付給投資人之利率。同時歐洲央行可再進一步降低對於歐盟投資銀行之利息,進一步降低歐盟投資銀行因發行綠色債券所帶來之利息壓力,促使綠色產業得以因應疫情之衝擊。   如此歐洲央行即達成其目的,減緩投資市場之震盪,同時達到振興經濟產業效益。這也是為何,歐洲央行僅得自次級市場(Secondary Market)購買債券,而不得直接自初級市場(Primary Market)購買債券之原因。

英國運輸部宣布擴大對平價零碳排車輛購車補助以推進車輛電動化

  英國運輸部(Department for Transport)於2021年12月15日宣布更新對零碳排放車輛購車補助計畫,未來將擴大對平價零碳排放車輛(affordable zero-emission vehicles)的購車補助,以創造更多購買電動車之誘因。充電式車輛購車補助計畫(plug-in grant scheme)在過去十年間已經補助超過50萬輛,並在2021年達成超過15萬輛,約每10台新車就有1台受該計畫補助,顯示電動車輛市場的持續擴大與需求的增加。   本次更新將著眼於針對售價低於32,000英鎊的電動車輛(目前英國市場中約有20款車型符合條件),提供最高1,500英鎊的購車補助,並且針對無障礙車輛售價與購車補助金額上限提高至35,000英鎊與2,500英鎊。在貨車購車補助方面,每年將提供1,000位消費者購買大型貨車5,000英鎊或小型貨車2,500英鎊的購車補助,2021年充電貨車計畫的購車補助規模較2020年已成長超過250%。而在電動機車與電動自行車方面,英國政府將對於售價低於10,000英鎊的電動機車與電動自行車分別提供500英鎊及150英鎊的購車補助。   英國政府指出,針對電動車輛的購車補助政策已經逐漸顯現效果,2021年電動汽車的銷售量已經超越2019年與2020年的加總數量,未來政府也將加強對充電基礎設施的建設,針對7.1千瓦以上的充電(包含快速充電)站訂定支付方式基本要求(例如必須具備無接觸支付方式)。英國政府承諾將提供35億英鎊用於支持英國汽車與供應鏈的電動化、電動汽車購車補助與興建基礎設施。

TOP