IBM釋出500項專利

 

 

  IBM送大禮給開放原始碼軟體開發商,全美專利龍頭IBM宣布,釋出500項專利供軟體開發業者使用。此舉顯示IBM的智慧財產權策略有重大改變,而高科技產業同時將面臨挑戰。


  IBM有意藉此在開放原始碼軟體開發業間建立專利共享的風氣,IBM資深副總凱利(John E. Kelly)表示,此舉是跨出一大步,希望其他人能追隨IBM做法,讓共享的專利能愈來愈多。另一位副總史托凌(Jim Stallings)指出,此舉是美國史上截至目前最大宗的專利開放案,意在鼓勵其它公司釋出專利以刺激科技創新。與此同時,美國專利商標局公布了去年度專利核發紀錄,IBM以獲得3248項專利勇冠全美,並將連霸紀錄推向連續12年,IBM去年度新添專利數量硬是比第二名的松下電器多出1314項。


  IBM這次釋出的五百項專利,其領域涵蓋儲存管理、模擬多重處理、影像處理、資料庫管理、網路連結和電子商務。該公司希望透過此一開放授權計畫帶動開放原始碼軟體開發業的合作風氣,這有利將問題轉化成一個交流平台,也有助改良IBM的發明。


  過去,IBM曉得利用專利授權創造更大利潤,這十年來IBM靠專利賺來的錢一直是勇冠全球,即使這次開放五百項專利,仍有數以千計的專利繼續為IBM賺取大筆佣金。大量開放專利的舉動造就IBM以較寬鬆定義重新詮釋專利法的先驅地位,評論家認為,這十年來的專利法改革侷限了軟體開發者的創新自由度,不再像促成個人電腦革新和網路革命的時空背景那般自由。IBM表示,該公司仍是專利的所有人,依舊保留運用專利對抗商用軟體製造商的權利。

 

本文為「經濟部產業技術司科技專案成果」

※ IBM釋出500項專利, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=279&no=67&tp=1 (最後瀏覽日:2026/02/14)
引註此篇文章
你可能還會想看
國際標準化組織(ISO)在COP29上發布全球ESG原則實施框架

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 在2024年11月11日至22日舉辦第29屆聯合國氣候變化大會(COP29)上,國際標準化組織(ISO)發佈全球第一部ESG國際標準:ISO ESG IWA 48《實施環境、社會和治理(ESG)原則框架》(Framework for implementing environmental, social and governance (ESG) principles)(簡稱為IWA 48:2024),為全球各地區、不同規模的企業提供統一管理標準,同時提供實施指引和行動範例,應對永續發展挑戰。 IWA 48有以下幾大重點: 1. ESG原則和實踐(Principles and practices in ESG):強調誠信、成效、公平、風險與機會、證據、持續改善等原則。 1.1風險與機會:風險跟機會應由高階管理階層從組織整體評估,因風險可能同時伴隨機會;同時,管理層面要運用科學方法及可靠數據紀錄,評估與建立行動方案與追蹤管控。 1.2負責及公開透明:在ESG原則為關鍵要素,清楚揭露經營績效和永續資訊,不僅可增強利害關係人信心,也有助於保護組織商譽。 1.3利害關係人參與:組織應重視內、外部利害關係人的意見,如員工、股東、客戶、供應商等;舉例來說,組織落實資訊公開,並藉由問卷或會議形式,請利害關係人回饋期望或意見。 1.4重大主題:組織評估內外部之營運狀況所可能遭遇挑戰,且考量利害關係人回饋、產業特性,進而辨識各項議題之衝擊程度與關聯性,及排定優先順序來制訂行動方案。 1.5關鍵績效指標(KPI)評估:針對各項重大主題依可靠數據紀錄,進而運用量化或質化手段,設定短期、中期和長期之具體目標。 2. 環境(Environmental):評估組織營運活動與環境變化之相互關係,因此須要根據科學方法建立基準與制訂目標,確保營運過程能有效執行策略。 3. 社會(Social):主要關注組織如何承擔社會責任,推動具有社會價值行為和政策,除遵循當地勞動法令外,可額外提供福利或照顧措施,如組織接納各國人民,公平方式進行面試,培訓應保障不會發生任何歧視情事。 4. 治理(Governance):董事會或管理階層要明確公告組織永續政策與要求,並建立道德規範,如誠信經營,法令遵循、風險管理等,尤其鑑別永續相關風險,如當地法令異動、環境變化,更要與利害關係人保持溝通與合作,進而評估組織政策與執行方向,再依據營運需求調整。 5. 合規性和一致性(Compliance and conformity):組織可採用第三方查(驗)證方式,協助組織評估有無符合當地法令、達到ESG要求標準,及組織對於ESG之承諾。 6. 報告(Reporting):組織可公開揭露永續資訊,如永續報告書或年報等;再者,組織應確保揭露內容之準確、清楚與可靠,並正面及負面資訊均清楚完整揭露,以讓利害關係人了解狀況與趨勢。 7. 持續改善(Continual improvement):透過關鍵績效指標(KPI)檢核,定期確認組織達成永續目標狀況,如有未達預期情事者,應落實根因分析、制訂矯正預防措施,並予以揭露與執行改善,以確保能達到長期目標。

聯邦選委會研議規制網路選舉活動

  日前(美國時間 3 月 24 日 ),美國聯邦選舉委員會( the Federal Election Commission; FEC )就擴張聯邦選舉法令適用範圍及於網際網路一事,提出最新版本草案。   草案認為,諸如網頁之橫幅廣告或搜尋網站贊助商之廣告連結等,須支付對價始能刊登之網路廣告,應與利用其他種類媒體刊登或播送之廣告接受相同處遇。此外,於網誌(部落格)支持特定候選人或發表政治性質言論者,則應與吾人向來使用之傳統媒體享有同等言論自由。最後,收件人數 500 以下之電子郵件,性質並非付費廣告之影音宣傳品,選民自發進行之線上宣傳活動等,均應排除於法令規制範圍之外。   去年該委員會即曾就此議題提出規制較為嚴格的版本,而遭部分網誌作家及國會議員強烈批判;其後委員會之法律專家就此重加研議,明確釐清適用範圍,改採較為寬鬆之規制取向。雖然目前之版本尚難謂完全明確,不過言論自由人士對於目前發展仍表樂觀其成。

歐洲發展智慧電網對資訊安全與隱私保護之現況

  歐盟執委會於2011年4月發布的「智慧電網創新發展」(Smart Grids: from innovation to deployment, COM(2011) 202 final),在有關資訊安全與隱私的部分指出,應建立消費者(consumer)隱私的保護規範,促進消費者的使用意願並瞭解其能源的使用狀況;在資訊交換的過程中,亦須保護敏感的商業資訊,使企業(companies)願意以安全的方式提供其能源使用訊息。   歐盟保護個人資料指令(Directive 95/46/EC)是保護個人資料的主要規範,同時也適用在智慧電網個人資料的保護上,但此時則需要去定義何謂個人資料,因為在智慧電網的發展中,有些屬於非個人資料。若為技術上的資訊而不屬於個人資料的範圍,能源技術服務業者(energy service companies)則不須經同意即可讀取該些資訊以作為分析使用。考慮將來廣泛建置智慧電網後,各會員國可能遭遇如何認定是否為個人資料及其保護的問題,因此目前傾向採取「privacy by design」的方式,亦即在系統設計之初,即納入資訊的分類,而不做事後的判斷。   對於此,歐盟執委會於2012年3月發布「智慧電表系統發展準備建議」(COMMISSION RECOMMENDATION of 9.3.2012 on preparation for the roll-out of smart metering systems),對於相關定義、資料保護影響的評估(例如各會員國必須填寫並提交執委會提供的評估表格,且提交後則必須遵循相關規範)、設計時的資料保護及預設(例如在系統設計時一併納入對資料的保護,使之符合資料保護的相關法規)、資料保護的方式(例如會員國必須確保個人資料的蒐集、處理及儲存是適當的並且具有關連性)、資料安全(例如對於資料偶然的或非法的破壞、或偶然的喪失等情形,亦應予以規範)、智慧電表的資訊與透明化(例如在蒐集相關個人資料後,仍應依規範提供資料主體相關的訊息)等方面提出建議,供各會員國於制訂相關規範時的依據。

英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

TOP