美國廠商使用之DMCA侵權調查正確性遭質疑

  一項由華盛頓大學所發表的研究聲明指出,媒體工業團體正使用有瑕疵的方式調查peer-to-peer網路文件共享中侵害著作權的問題。包括M.P.A.A.、E.S.A.、R.I.A.A等團體,不斷寄出逐年增加的DMCA侵權移除通知(takedown notices)給各大學和其他的網路業者。許多大學會在未經查證的情況下直接將侵權移除通知轉寄給學生,R.I.A.A.甚至跟進其中的一些侵權報告並將之寫入財務報告中。

 

  但在2008年6月5日由華盛頓大學的助理教授等三人所發表的研究中認為這一些侵權移除通知應該更審慎檢視之。研究指出,這些團體在指控檔案分享者的調查過程中有嚴重的瑕疵,可能使對方遭受不當的侵權指控,甚至可能來自其他網路使用者的陷害。在2007年5月及8月的兩次實驗中,研究員利用網路監控軟體監控他們的網路流量,實驗結果顯示即使網路監控軟體並未下載任何檔案,卻仍然接收到了超過400次的侵權警告信。

 

  該研究結果顯示執法單位的調查過程中只查詢了網路分享軟體使用者的I.P.位址,卻未真正查明使用者正在下載或是上傳的實際檔案為何,在這種薄弱的搜查技巧跟技術方式之下任何使用網路文件分享軟體的使用者都可能被告,不論其所分享的檔案是否侵權皆如此。

相關連結
※ 美國廠商使用之DMCA侵權調查正確性遭質疑, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2827&no=64&tp=1 (最後瀏覽日:2026/02/06)
引註此篇文章
你可能還會想看
美國聯邦法官裁決AI「訓練」行為可主張合理使用

美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

歐盟發佈關於監督金融業之數據保護準則

  歐洲數據保護監督組織(European Data Protection Supervipsor,EDPS)發表「關於在歐盟監督金融業之數據保護準則」(Guidelines on Data Protection for Financial Services Regulation),以作為確保歐盟的數據保護規範,將被整合進正在發展中的金融政策與相關規定之實用工具。該準則為金融市場監督機制的一部分,在金融業對個人資料的處理上,特別是透過監控、記錄保留、回報、以及資訊交換這些存有侵犯個人資料和隱私權風險的措施予以規範。   該準則包含10項步驟與建議,旨在協助歐盟後續金融監督政策的制定,其中一些重要的建議如下: (1)應評估資訊之處理是否可能妨礙隱私權。 (2)應為數據的處理建立法律基礎。 (3)評估適當的資訊保留期限並給予正當化依據。 (4)建立個人資料傳輸至歐盟外的正當法律依據。 (5)提供個人資料保護權利的適當保障。 (6)衡量適當的數據安全保護措施。 (7)應為數據處理的監督提供特定之程序。   有鑒於2008年金融危機的影響,該準則透過提供一個能確保個人資料被妥善保護的有效方法,期以重建金融市場的信心。Giovani Buttarelli,作為新任歐洲數據保護監督委員,在一份伴隨準則釋出的聲明稿當中表示:「個人資料的價值已經隨著數位經濟的成長不斷增加,確保各行業的個人資料得以受到保護也益顯重要。歐洲數據保護監督組織(EDPS)計畫對不同行業制定相關保護規範,此準則是第一個發佈的。」

日本政府內閣於今年3月提出個人資料保護法修正草案

  為因應2016年正式上路實施之社會保障與納稅人識別號碼制度(社会保障・税番号制度)對於個人資料保護所產生之影響,日本政府內閣於2015年3月10日於國會提出個人情報保護法之修正案。   此次修正案主要分有六大重點,包含個資定義擴充與明確化、確保個資文件內容之正確性、強化個資保護規範內容、設立個人情報保護委員會、個資情報處理全球化,以及其他修正事項如未得當事人同意之第三人使用個資條件嚴格化等。   其中主要有兩項係與社會保障與納稅人識別號碼制度相關。首先是強化個資保護規範內容部分,由於社會保障與納稅人識別號碼制度將遇有個資資料庫使用情況,故新增個資資料庫之相關規範與罰則,行為人於未經授權或不當使用個資資料庫時,將可處1年以下拘役併科日幣50萬元以下之罰金,亦即當行為人違反個資法有關個資資料庫規定時,不但須支付罰金也須負刑事責任。   其次,擬設立直屬內閣總理大臣所轄之個人情報保護委員會,其委員組成人選須經參眾兩議院同意後,由內閣總理大臣任命之。委員會主要任務在於專責監督與監測政府各機關以及民間個資處理事業對於個資的傳遞、處理,並適時提出指導意見或建言。

以「公私夥伴關係(PPP)」發展科技之作法

  近來常聽聞各國以公私夥伴關係(Public-Private Partnership, PPP)之模式發展產業科技,PPP故名思義,係指結合公私部門之力量,以共同達成公共政策目標之合作模式。公部門可借重私部門的專業、經驗與品質,使其服務更有效率,私部門也可得到政府與政策之支持。   如今科技進步程度往往可代表ㄧ國之競爭力,惟科技研發需投入大量成本,因此各國多有針對科研補助之相關政策,從早年的單方補助,到如今強調公私合作進行科研的PPP模式。各國亦提出各種產官學合作研發的模式或組合之立法或相關政策。例如成立獨立非營利法人讓各項研發活動進行更方便、研究設施設備共享更容易的日本「技術研究組合」、芬蘭之SHOKs。荷蘭近來亦大力推行PPP研發之策略。德國之高科技領先戰略計畫( Spitzencluster-Wettbewerb)亦以區域聚落(該區域聚落即包含產業界、大學及其他相關學術機構)為單位,藉競爭給予補助的方式,促成該地區產官之緊密合作。

TOP