CAFC判決未遵守自由授權條款構成著作權侵害

  美國聯邦巡迴上訴法院(CAFC)於2008年8月13日,在Jacobsen v. Katzer一案中,對於未遵守自由軟體授權條款而使用他人著作,作成構成著作權侵害之判決,扭轉地方法院之判決結果。由上訴人Jacobsen經營的JMRI(Java Model Railroad Interface),透過多數參與者集體協作的程式DecoderPro,為開放資源的自由軟體,採取Artistic License模式,供模型火車迷編輯解碼器晶片(decoder chip)的程式以操控模型火車;被告Katzer從 DecoderPro下載了數個定義檔來製作一套市售軟體稱Decoder Commander,卻未遵守該自由授權條款,包括未標示JMRI為原始版本之著作權人、可從何處取得標準版本、及修改後版本與原始版本差異部份之註記等。

 

  Jacobsen認為Katzer的侵害著作行為已造成不可回復之損害,請求法院暫發禁止命令(preliminary injunction)以停止Katzer的違法行為,地方法院認為被告乃違反非專屬授權契約,應依違反契約責任負責,不另構成著作侵權行為,駁回暫發禁止命令的請求。

 

  聯邦巡迴上訴法院認為本案爭點在於「自由軟體授權條款的性質究屬契約內容(covenant)或授權條件(conditions of the copyright license)?」,由於Artistic License之用語為「在符合下列條款之條件下」(provided that the conditions are met )方能重製、修改及散布,以遵守授權條款為取得授權之條件,本案中Katzer未能遵守條款,因而根本未取得授權,其行為屬無權使用而構成侵害著作權,是以命地方法院就暫發禁止命令一事重新審理。在善意換取善意(Creative Common,創用CC)及分享著作的潮流下,支持者譽此結果為自由軟體的一大勝仗。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ CAFC判決未遵守自由授權條款構成著作權侵害, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2881&no=64&tp=1 (最後瀏覽日:2025/12/11)
引註此篇文章
你可能還會想看
敏感科技保護

  「敏感科技」的普遍定義,係指若流出境外,將損害特定國家之安全或其整體經濟競爭優勢,具關鍵性或敏感性的高科技研發成果或資料,在部分法制政策與公眾論述中,亦被稱為關鍵技術或核心科技等。基此,保護敏感科技、避免相關資訊洩漏於國外的制度性目的,在於藉由維持關鍵技術帶來的科技優勢,保護持有該項科技之國家的國家安全與整體經濟競爭力。   各國立法例針對敏感科技建立的技術保護制度框架,多採分散型立法的模式,亦即,保護敏感科技不致外流的管制規範,分別存在於數個不同領域的法律或行政命令當中。這些法令基本上可區分成五個類型,分別為國家機密保護,貨物(技術)之出口管制、外國投資審查機制、政府資助研發成果保護措施、以及營業秘密保護法制,而我國法亦是採取這種立法架構。目前世界主要先進國家當中,有針對敏感科技保護議題設立專法者,則屬韓國的「防止產業技術外流及產業技術保護法」,由產業技術保護委員會作為主管機關,依法指定「國家核心科技」,但為避免管制措施造成自由市場經濟的過度限制,故該法規範指定應在必要的最小限度內為之。

因應使用「生成式AI(Generative AI)」工具的營業秘密管理強化建議

2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。 該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。 實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之: 一、人員面: 1.員工(教育訓練、合約) 在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。 在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。 2.生成式AI工具提供者(合約) 針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。 二、技術方面: 建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。 綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

美國專利商標局宣布快軌上訴試驗計畫

  美國專利商標局(The United States Patent and Trademark Office, USPTO)於今年7月1日發布新聞稿,即專利審判及上訴委員會(Patent Trial and Appeal Board, PTAB)開始加速處理單方上訴的計畫。該計畫名為「快軌上訴試驗計畫(Fast-Track Appeals Pilot Program)」並於今年7月2日正式啟動。   根據該計畫,專利審判及上訴委員會上訴裁決的目標時間預計為該上訴被賦予快軌(即批准加速審查)之日起六個月內,此與美國專利商標局之期望相符。蓋目前單方面上訴的裁決時間平均約14個月,因此,對於申請該計畫的人來說,該計畫平均應將上訴程序縮短約8個月。惟申請該計畫所需費用為400美元,且被批准的申請案會被限制在每季125件,會計年度最多500件,預計施行一年。   美國商務部負責智慧財產權事務副部長兼USPTO局長Andrei Iancu表示:「這是USPTO史上首次,申請人將能夠加快專利審查和單方上訴的速度,從而能較典型申請案約一半的時間內,就其最重要的發明做出決定。」。PTAB首席法官Scott Boalick亦表示:「近年來,我們取得了長足的進步,將上訴待決時間從2015年的平均30個月減少到目前的平均14個月。很高興PTAB現在能夠為申請人提供更快的途徑,從而使發明人和企業能夠更快地將其專利發明商業化。」   值得一提的是,我國智慧財產局亦有發明專利加速審查(Accelerated Examination Program, AEP)及商標加速審查機制。而AEP更早於民國98年1月1日起試辦實施,依據申請事由之不同,智財局將在申請人齊備相關文件後,於6個月內或9個月內發出審查結果通知。

美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力

2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。

TOP