在奈米產品開創新生活態樣的同時,也因為奈米材料相異之運用途徑,產生了管理上的困難。儘管如此,新興科技仍應就風險而設計因應之道,並著眼於鑑別奈米材料潛在之危險性、瞭解人體暴露於奈米微粒環境之程度,以及確認適當之評估策略。
加拿大學術議會(Council of Canadian Academies)於2008年7月公佈奈米研究報告「微小即不同:由科學觀點看奈米法制之挑戰(Small is Different: A Science Perspective on the Regulatory Challenges of the Nanoscale)」;目的係針對奈米科技之學術研究、風險評估與管理監控等三部份奠定法制基礎。該報告由加拿大健康部擔任召集人,並成立奈米專家小組,共歷時八個月完成;內容分為三項:彙整該小組對於奈米議題所累積之科學成果、擷取網路使用大眾對於奈米材料相關法規之諮詢與對話,以及奈米專家針對該新興科技所提出之建議與發展方針。
然而,就法規面而言,該研究小組認為,根據現下奈米材料之特性,尚無制定新法之必要,僅需延伸現有法規機制即可,並提供建議如下:
(1) 設定專門用語和分級以便於奈米材料之EHS研究。
(2) 建立標準安全控制程序或技術。
(3) 重新思考以工作場域、消費者及環境為主軸之監督方式。
(4) 使用得宜之生命週期途徑以分析奈米材料之相關風險。
該報告指出,現有的科技法規與風險處理機制,著實因侷限於奈米材料諸多之未知而遭受挑戰,並引發各界對於相應管理策略之大規模研究,故無論中央或地方政府,應更加關注國內各部會於奈米議題下之協調、科學環境之變化,及他國法制之更替。
日本於2023年6月6日召開有關「再生能源、氫能等相關」內閣會議,時隔6年修正《氫能基本戰略》(水素基本戦略),其主要以「水電解裝置」、「燃料電池」等9種技術作為戰略領域,預計15年間透過官民投資15兆日元支援氫能相關企業,希冀盡速實現氫能社會。 日本早於2017年即提出氫能基本戰略,由於氫氣在使用過程中不會產生溫室氣體或其他污染物質,被認為是可以取代傳統化石燃料的潔淨能源,欲以官民共同合作,無論在日常生活、生產製造等活動下,都能透過氫能發電方式,達成氫能社會,故推出降低氫能成本、導入氫能用量的政策,並以2030年為目標,將氫能的用量設定為30萬噸、同時將氫能成本降為30日元/Nm3(以往價格為100日元/Nm3),使其成本與汽油和液化天然氣成本相當。為配合2021年《綠色成長戰略》,日本再次擴充目標,透過活用綠色創新基金,集中支援日本企業之水電解裝置和其他科技裝置,預計在2030年的氫能最大供給量達每年300萬噸、2050年可達2000萬噸。 然而隨著各國紛紛提出脫碳政策和投資計畫,再加上俄烏戰爭之影響,全球能源供需結構發生巨大變化,例如:德國成立氫氣專案(H2 Global Foundation)投入9億歐元,以市場拍賣及政府補貼成本的方式推動氫能、美國則以《降低通膨法》(The Inflation Reduction Act),針對氫能給予稅率上優惠措施等,在氫能領域進行大量投資,故為因應國際競爭,日本重新再審視國內氫能發展,並修正《氫能基本戰略》,除提出「氫能產業戰略」及「氫能安全保障戰略」外,本次主要修正之重要措施摘要如下: 1.維持2030年、2050年氫能最大供給量之設定,但新增2040年時提出氫能的最大供給量目標為1200萬噸。 2.由於水電解裝置在製造綠氫時不可缺,爰設定相關企業於2030年前導入15GW左右的水電解裝置,同時確立日本將以氫能製造為基礎之政策。 3.鑒於氫能科技尚不純熟、氫能價格前景不確定性高,在氫能供應鏈的建構上有較大風險,故透過保險制度分擔風險,以提高經營者、金融機構投資氫能之意願。 4.藉由氫能結合渦輪、運輸(汽車、船舶)、煉鐵化學等其他領域,期以氫氣發電渦輪、FC卡車(使用氫氣燃料電池Fuel Cell之卡車)、氫還原製鐵為中心,强化國際競爭力,創造氫能需求。 5.預計10年間,以產業規模需要在都市圈建設3處「大規模」氫能供給基礎設施;另依產業特性預計於具相當需求之地區,建設5處「中等規模」基礎設施。
英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。
韓國修法簡化"孤兒著作法定授權程序"韓國著作權法施行令於今年(2012)4月12日修正,10月13日施行,其中值得注意的地方就是簡化「孤兒著作法定授權程序」,目的就是要改善孤兒著作授權,耗時過長的問題。在韓國,一般來說,取得孤兒著作授權要花2個月以上時間,而且對申請人而言,最困難的地方在於要證明已盡一切努力搜尋權利人未果,所以過去10年(2001~2011)內,只有37件孤兒著作獲得授權。 韓國孤兒著作法定授權程序之簡化內容為:除申請人可自行證明已盡相當努力外,政府可代為證明已盡相當努力,亦即只要符合「查詢著作權登記簿」、「查詢著作權集體管理團體之權利資訊目錄」、「著作在『尋找權利人資訊系統』公告3個月以上」等法定要件,即可認定已盡相當努力,直接准予授權使用孤兒著作。其目的主要就是要增進使用孤兒著作的便利性。 前述之「尋找權利人網站」:www.findcopyright.or.kr,係由韓國著作權委員會建置,申請人亦可在網站上申請孤兒著作授權。手續費每件1萬韓圜(相當於新台幣287.9元)。
打開學校網路教學的潘朵拉盒子-談教師所開發數位教材的著作權歸屬