Google成功阻擋GOOGLEBAY商標註冊

  日前在澳洲GoogleInc(Google)成功的阻擋DmitriRystk(Rystk)以GOOGLEBAY申請註冊於第35類消費者市場情報服務(consumermarketinformationservices)的商標。

 

  根據澳洲商標法規定,提出異議者,即商標權人-Google,必須要能立證其所註冊的服務或商品中與爭議商標申請人Rystk所申請註冊的商標所指定的服務,至少有包含一項跟消費者市場情報服務類似的服務或商品;並且GOOGLE與GOOGLEBAY有足以令人混淆誤認之虞。

 

  Google提出的訴因為:
1) GOOGLEBAY乃是與GOOGLE有“欺矇性的”相似(deceptivelysimilar)商標
2) Rystk提出註冊申請(2006年06月16日)時,GOOGLE已經在澳洲有相當知名度

 

  澳洲商標審查員認為消費者市場情報服務是一個很廣義的範圍,可以想見其中必然包括廣告服務。因此,它所指定的服務即包含類似於Google第1049124號註冊商標所包含的服務,其中包括透過網際網路散佈廣告。

 

  澳洲商標審查員亦同時提到GOOGLE此造字的特殊性,及另一個造字EBAY皆無字典上的解釋,並且這兩個造字都跟網際網路有強烈的關聯。根據這個見解,消費者即有可能將GOOGLEBAY視為GOOGLE跟EBAY的結合造字,加上並沒有其他字義解釋的情況下,想當然爾會認為GOOGLEBAY與Google的事業有關,比如認為GOOGLEBAY是GOOGLE關係家族的商標之一。加上GOOGLE商標在澳洲亦有十足的知名度*,更能讓商標審查員同意如此“欺矇性的”相似商標有足以令人混淆誤認之虞。

 

  在此特別一提的是澳洲的商標法修正後,在對商標註冊提出異議時,對以與著名商標有疑似混淆誤認的訴因中“欺矇性的”相似已不再是前提要素。因此,商標審查員核駁了Rystk的GOOGLEBAY註冊申請。

 

*註1:根據澳洲聯邦商標法第60條第1項,商標註冊可以因另一商標在註冊的優先權日前即已在澳洲獲得相當知名度而遭到異議

相關連結
※ Google成功阻擋GOOGLEBAY商標註冊, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2954&no=64&tp=1 (最後瀏覽日:2026/02/22)
引註此篇文章
你可能還會想看
eBay網站因販賣仿冒品被法國法院判決敗訴並須賠償原品牌業者

  繼eBay 於 今年6月4日因未制止網拍業者於eBay 網站上拍賣仿冒品被法國法院( The Tribunal de Grande Instance in Troyes)判決敗訴 、 須與網拍業者共同賠償精品業者愛瑪士 (Hermes)2萬歐元後,不到一個月的時間,另一法國法院( The Tribunal de Commerce in Paris) 於6月30日再度判定eBay因任由網拍業者拍賣仿冒物品而需賠償LVMH集團共3860萬歐元並禁止eBay在其網站上販賣LVMH集團旗下包括迪奧(Dior)、嬌蘭(Guerlain)、紀梵希(Givenchy)及Kenzo 4個品牌之香水。   eBay 表示為了保護品牌業者的智慧財產權,其已投資了超過2000萬美元建置相關機制(The Verified Rights Owner) 讓品牌業者可以容易的發現仿冒的網拍品並通知eBay 將該物品下架。但愛瑪士及LVMH集團皆認為該機制尚不足以杜絕仿冒品的銷售。   針對LVMH之判決,Vanessa Canzini, eBay 的發言人表示 “如果有仿冒品出現在eBay 的網站上, eBay會迅速地將該物品下架,但此次的判決非關仿冒品”。 Sravanthi Agrawal, eBay 的另一發言人表示 “此次判決的重點在銷售管制 (指LVMH集團企圖壟斷其銷售管道),因eBay 並非LVMH集團所授權的銷售管道之一”。 eBay 表示LVMH集團的壟斷行為將對消費者造成傷害,將代表消費者提起上訴。   以上兩案經由法國法院針對拍賣網站提供平台販售仿冒品之判決結果預計將於國際間引發連鎖效應。一位美國智財律師表示美國法院目前認為在美國商標法下,eBay 有義務將仿冒品從其網站上移除。而法國法院的判決則更進一步要求拍賣網站在仿冒品被放上網站拍賣前就有義務制止其被拿出來販售。法國法院的見解如未被推翻將可能鼓勵其它國法院針對類似案件做出相同的判決結果。

英國頻譜管理改革政策介紹

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

OTT影音發展與著作權-以英國為例

TOP