近來國際藥商逐漸將研發眼光放在市面上既存的蛋白質生技學名藥(follow-on biologics, Biosimilar, Biogenerics)上,顧名思義,生技學名藥乃是仿製市面上的生技藥品,而在臨床效用上與所仿製的藥品完全一樣或只是做些微調整改良。
目前生技學名藥並無法適用Hatch-Waxman Act下之「簡易新藥申請」(Abbreviated New Drug Application,ANDA)程序,原因在於生技製藥通常為複雜的大分子,難以確認其與上市產品100%相同,故美國FDA採取另立新法管理的態度,但迄今仍未通過任何法律。在歐盟,由歐洲藥品管理局(European Medicines Agency)所發布的生技學名藥核准準則只要求藥商提出其分子具有與上市藥品相同之物理特性及毒性安全數據即可上市,故現行已有少部分生技學名藥在歐洲上市。
因而藥商在無簡易上市的程序下,只能循完整的臨床有效性試驗程序。事實上這與現行美國擬對生技學名藥上市管理所提出的法律草案內容一致,目前提出於國會山莊的三個法律草案版本(Sen. Ted Kennedy’s S.1695, Sen. Judd Gregg’s S.1505 & Rep. Anna Eshoo’s H.R.5629)皆強制大部分生技學名藥上市前必須經過完整的臨床有效性試驗。
相反的,傳統學名藥在自1984年的Hatch-Waxman Act以來,並無需進行最昂貴的第二及第三階段之臨床試驗,也因此對於病患、消費者等而言,生技學名藥價格並不友善,通常只比其所仿製的上市藥品便宜一至二成,在有市場利基的功用調整下則有可能更貴;這比起競爭激烈的學名藥價格動輒較其原始藥品便宜五成以上相去甚多。並且所費不貲的臨床實驗亦將使生技學名藥只有擁有龐大資源的少數大藥廠能取得入場門票,因此專家預估生技學名藥的立法並不會像Hatch-Waxman Act一樣,進而形成生技學名藥業(generic biotech industry),而是形成所謂的生技仿製業(me-too industry)。
日本著作權法第2條第1項第1款規定對著作物定義中,創作性之表現必須為具有個人個性之表現,日本對於無人類行為參與之人工智慧創作物,多數意見認定此種產品無個性之表現,非現行著作權法所保護之產物。人工智慧之侵權行為在現行法的解釋上,難以將人工智慧解釋其本身具有「法人格」,有關人工智慧「締結契約」之效力為「人工智慧利用人」與「契約相對人」間發生契約之法律效果。日本政府及學者對人工智慧之探討,一般會以人工智慧學習用資料、建立資料庫人工智慧程式、人工智慧訓練/學習完成模型、人工智慧產品四個區塊加以探討。日本政策上放寬著作權之限制,使得著作物利用者可以更加靈活運用。為促進著作之流通,在未知著作權人之情況下,可利用仲裁系統。在現今資訊技術快速成長的時代,面對人工智慧的浪潮,日本亦陸續推出相關人工智慧研發等方針及規範,對於爾後之發展值得參酌借鏡。
歐盟議會發布《可信賴人工智慧倫理準則》2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下: 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。 問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。
數位內容通路商收購相關支援技術數位內容於廣播應用上銷售與管理解決方案的領導廠商拜斯法爾 (Pathfire, Inc)於日前收購了相關的支援技術 Digital Media Gateway (DMG) Server Connect for Programming,並將此一技術應用於十二個廣播站上。 在技術整合之後, 拜斯法爾的程式聯結伺服器,將得以直接將 DMG伺服器之數位內容傳輸至廣播站的空中播送伺服器,並保留原先的數位格式。 隨著廣播電視的數位化,數位內容、廣播電視與相關數位技術的整合,應是未來發展的趨勢。相關技術的整合與相關企業的轉投資與併購,應會持續增加。政府在擬定政策與相關法令之時,宜事先掌握相關趨勢,因勢利導,以達事半功倍之效。
Tesla開放所有專利過去,在Tesla的總部大廳有一道專利牆,然現在已將它們移除,並不代表任何意義了,象徵進入推動類似「開放原始碼軟體」的概念,促進電動交通工具科技的發展。電動車製造商Tesla 的執行長Elon Musk表示S電動車款將仿效「開放原始碼軟體」的概念,免費提供製造者使用相關專利,以加速電動車產業的發展,因電動汽車的銷售量,仍未及一般汽車銷售量的1%;再者,假如電動車廣泛的發展,亦可降低電池交換站等基礎設施的成本。 Tesla為促進永續運輸的發展,將釋出數百件專利,且不會針對任何基於善意使用Tesla技術的人,提起專利訴訟,並進一步表示「假如我們是創造電動交通工具的開路先鋒,卻同時佈下許多智財地雷,禁止其他人踏入電動車產業領域,豈不是和我們的理念背道而馳。」Elon Musk坦言當他經營第一間公司時,認為專利等同於獎勵,因此設法努力取得專利;但之後體認到專利某程度阻礙進步,且保護的是大企業而非發明人本身,亦即企業有如獲得一場訴訟的門票,必須盡量避免運用此手段。 每年全球有100億元的新車產量,Tesla的生產速度根本不足以應對碳危機,易言之,在如此廣大的市場,Tesla真正的敵人為世界各地工廠每日傾瀉出產的汽油車,而非其他的電動車製造商,故釋出專利的舉動,相信將能促始其他電動車製造商,甚至全世界的電動車產業,因此共同且加速發展的科技平台而受惠。