加州通過氣候變遷計畫

  加州環保署下的加州空氣資源委員會(California Air Resource Board),在2008年12月通過了加州氣候變遷計畫(Climate Change Scoping Plan),目標是在2020年將州內的溫室氣體減量至1990年的水準,本計畫是依加州州長Schwarzenegger在2006年9月,所簽署的2006全球暖化解決法(the Global Warming Solutions Act of 2006)之要求而提出。加州是美國第一個如此正式訂立一個全面性的、法定的、且包含了每一個經濟層面的關於溫室氣體減量計畫的州。

 

  氣候變遷計畫的原則是,找出最佳策略去減少約百分之三十的溫室氣體排放,同時在乾淨和永續的原則下發展加州經濟。計畫中的一個重點方案是碳總量管制與交易(Cap-and Trade),加州將和「西部氣候行動」聯盟(Western Climate Initiative)合作,此組織包括美國七個州及加拿大四個省份,共同承諾去管制它們的碳排放,並建立一個地方性碳交易市場。計畫中其它重要的方案還包括了,執行加州清淨汽車標準、增加州內乾淨和永續能源的使用、執行低碳燃油標準等。

 

  加州空氣資源委員會主席Mary Nichols指出,本計畫是加州達成更安全與永續經濟的指南,它將會引導資本投資在增加能源效率和發展再生能源,使加州對石油的依賴降低,並給予加州居民數以千萬的工作機會。且身為第一個採取如此綠色行動的州,加州在吸引全球相關投資及發展綠色科技上將維持自己立於一個領導地位,取得並擴大全球綠色市場的需求。加州空氣資源委員會將開始擬定執行所有方案的細節,依法所有的方案必須於2012年前全部生效執行。

相關連結
※ 加州通過氣候變遷計畫, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2956&no=67&tp=1 (最後瀏覽日:2026/02/02)
引註此篇文章
你可能還會想看
歐盟網路與資訊安全局暨網路安全認證規則要求進行「網路安全認證機制」

  歐盟執委會於2019年6月正式通過「歐盟網路與資訊安全局暨網路安全認證規則(EU Regulation on ENISA and Cyber Security Certification)(Regulation (EU) 2019/881)。規則新增歐盟網路與資訊安全局(European Union Agency for Network and Information Security,ENISA)之職責,負責推行「網路安全認證機制(European cybersecurity certification scheme)」。   網路安全認證機制旨在歐盟層面針對特定產品、服務及流程評估其網路安全。運作模式是將產品或服務進行分類,有不同的評估類型(如自行評估或第三方評估)、網路安全規範(如參考標準或技術規範)、預期的保證等級(如低、中、高),並給予相關之認證。為了呈現網路安全風險的程度,證明書上可以使用三個級別:低、中、高(basic,substantial,high)。若資訊安全事件發生時,對產品、服務及流程造成影響時,廠商應依據其產品或服務之級別採行相對應的因應對策。若被認證為高等級的產品,則表示已經通過最高等級的安全性測試。   廠商之產品或服務被認可後會得到一張認證書,使企業進行跨境交易時,能讓使用者更方便理解產品或服務的安全性,供應商間能在歐盟市場內進行良好的競爭,從而產生更好的產品及性價比。藉由該認證機制所產生的認證書,對於市場方將帶來以下之效益: 一、產品或服務的提供商(包括中小型企業和新創企業)和供應商:藉由該機制獲得歐盟證書,可以在成員國中提升競爭力。 二、公民和最終使用者(例如基礎設施的運營商):針對日常所需的產品和服務,能做出更明智的購買決策。例如消費者欲購買智慧家具,就可藉由ENISA的網路安全認證網站諮詢該產品網路安全資訊。 三、個人、商業買家、政府:在購買某產品或服務時,可以藉此機制讓產品或服務的資訊透明化,以做出更好的抉擇。

德國通過電力市場發展法和能源轉型數位化法以因應下階段

  德國聯邦議會通過電力市場發展法(Gesetze zur Weiterentwicklung des Strommarktes)和能源轉型的數位化法(Gesetze zur zur Digitalisierung der Energiewende)。   本次新制定之電力市場法,是90年代後德國電力市場重大發展。目的在於調適電力市場,以配合當今德國快速成長的再生能源發電比例。為使電力供應繼續保持合理價格和電力供應可靠安全,在確認未來電力市場發展繼續朝向增加越來越多風力發電和太陽能發電之路線的同時,預先架構法制環境,為將來配合運用發電端的彈性、需求端彈性與電力儲存技術,確定電力市場發展方向和框架條件。在上述等規範之下,電力交易商有義務,亦即售電者應該設法建構自身電量儲備作為因應,在電網需要時饋入電網,為供電安全提供必要準備。另外在注重必要容量儲備上之投資外,亦強調電力批發市場上的自由定價原則,維持整體市場所需容量在均衡、平衡之穩定電力供應狀態。   另外,能源轉型數位化法則是使電力部門成為創新之有效制度工具。蓋其作為基礎建設,使新創業模式,例如藉由與消費者持有之再生能源發電設備之連結,發展出新商業獲利模式。修法核心內容係引入智慧量測系統,功能在於作為安全的通訊平台,使電力供應系統能夠配合能源轉型發揮最大功用。   最後,為配合巴黎協定後德國環境政策,在遏止溫室效應氣體的實施具體作為,電力市場法一部份重要內容在於暫時停止褐煤電力電廠發電運轉。配合電網安定的調度需求,僅在指定時間內,使其成為電力安全預備,並最終不再使用褐煤發電,以實現到2020年德國在電力部門的氣候目標。   德國完成電力市場法,結束由“綠皮書”和“白皮書”開始的進程,與鄰國經過廣泛的公眾諮詢和協調會議之後,最終選擇電力市場2.0與市場自由定價的機制,而反對所謂的容量市場。決定性的因素在於,如此一來政策所需花費的成本較另一選項來得低,且更容易使德國融入歐洲電力單一市場架構。依據本法新創建的容量儲備,將與電力市場中其他電力嚴格區分,專門作為應對突發事件額外的安全網。   在「區域合作聯合聲明」中,德國經濟與能源部長於2015年6月8日與11鄰國商討後決定,保證在電力短缺和高電價時,德國側將提供電力的自由定價和跨境交易,如此一來可用更低成本以生產電力,德國和周邊國家的內部單一市場在此看到了巨大的經濟優勢。   與歐洲各國相較,德國在電力供應安全議題上處於領先地位。再加上新的電力市場法,預計未來幾年電力市場能夠達到持續健全發展之目標。

FAA公告禁止無人機於美國主要旅遊景點內飛行

  根據美國國家安全執法機構(US national security and law enforcement agencies)之要求,美國聯邦航空總署(Federal Aviation Administration,以下簡稱FAA)於2017年9月28日,依照聯邦法規(Code of Federal Regulations)第99.7條規定,發布無人機飛行規則,禁止任何人於多個旅遊地點邊界範圍400英尺內飛行無人機。美國聯邦調查局(FBI)局長Christopher Wray表示,「擔心恐怖分子會使用無人機進行攻擊。」   從FAA的公告中,禁止無人機飛行之限航區係由FAA和內政部(Department of the Interior,以下簡稱DOI)共同指定,包括:紐約自由女神像(Statue of Liberty National Monument)、波士頓國家歷史公園(Boston National Historical Park)、費城獨立國家歷史公園(Independence National Historical Park)、加州福爾索姆水壩(Folsom Dam)、亞利桑那州格倫峽谷大壩(Glen Canyon Dam)、華盛頓州大古力大壩(Grand Coulee Dam)、內華達州胡佛水壩(Hoover Dam)、密蘇里州傑弗遜國家擴張紀念公園(Jefferson National Expansion Memorial)、南達科他州拉什莫爾山國家紀念公園(Mount Rushmore National Memorial)、加州沙斯塔壩(Shasta Dam)。以上具體位置皆屬DOI管轄地區,也是FAA第一次將無人機之空域限制規定於DOI地標上,目前FAA仍對軍事基地進行類似空域限制。   限制無人機飛行之規則將於2017年10月5日生效,違反空域限制者,將採取法律行動,包含民事處罰和刑事追訴。只有少數例外情形,允許無人機在限制區內飛行,且必須和個別場所或FAA進行協調。FAA表示,正依聯邦法規第99.7條配合考慮其他聯邦機構對於無人機之其他限制要求。

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP