曾開發「暴雪英霸」、「暗黑破壞神」、「魔獸世界」等多款人氣電玩遊戲的暴雪娛樂公司(Blizzard Entertainment, Inc.)素來對遊戲中的作弊外掛程式採取嚴厲的打擊手段。暴雪娛樂日前對於「暴雪英霸」遊戲中的外掛全自動機器人程式(cheating bot)採取行動,對外掛程式開發公司德商Bossland GmbH的開發者James Enright及數名匿名工程師提出著作權侵權訴訟,並指控其外掛程式讓玩家在遊戲中作弊,影響遊戲的公平性及其他玩家的娛樂,而且損及暴雪娛樂公司的獲益。James Enright最後與暴雪娛樂達成協議,交出外掛程式的原始碼。 隨後,Bossland GmbH公司控訴暴雪娛樂公司偷走他們的原始碼。Bossland GmbH的執行長Zwetan Leschew表示,James Enright所交出外掛程式原始碼的智慧財產權屬於Bossland GmbH公司,James Enright是Bossland GmbH公司的自由程式開發者,暴雪娛樂公司已經於德國參與了數個對自動機器人程式開發者的訴訟,對於James Enright與Bossland GmbH之間的關係應有所了解。從暴雪娛樂公司和James Enright的協議可以看出,暴雪娛樂公司要求James Enright將程式原始碼交出,以換取訴訟的停止。 暴雪娛樂公司發布聲明表示,暴雪娛樂已在德國贏得了多起與Bossland GmbH公司的訴訟,儘管他們利用策略手段來拖延正在進行的訴訟程序,仍堅信法院制度會繼續證實我們的主張,而且最終會阻止作弊全自動機器人程式的散布。
美國總統發布行政命令,促進資料中心基礎建設之發展2025年7月23日,川普總統簽署行政命令,加速資料中心基礎建設(data center infrastructure)之發展。適用該命令之資料中心,需新增超過100百萬瓦(MW)電力負載,並新增瓦數專用於人工智慧推論、訓練、模擬或產生合成資料。 行政命令內容主要包含以下事項: 1. 政府將為合格資料中心基礎建設提供財政支持,如貸款、貸款擔保、補助金(grants)、稅收優惠(tax incentives)或承購協議(offtake agreements)。本行政命令所稱之合格資料中心基礎建設,其本體或相關設施需符合以下條件之一: (1) 業者承諾投資超過五億美元,五億以上之具體門檻以美國商務部長認定為準。 (2) 新增超過100百萬瓦(MW)之電力負載。 (3) 有助於維護國家安全。 (4) 經美國國防部、內政部、商務部或能源部之部長指定。 2. 撤銷拜登總統發布之14141號行政命令「推進美國在人工智慧基礎建設領域的領導地位」。該命令原要求在聯邦土地建設人工智慧資料中心者須提供關於多元與氣候議題之說明。 3. 指示政府機關簡化合格資料中心基礎建設的環境審查和許可。 (1) 相關政府機關應向環境品質委員會(Council on Environmental Quality)確定依《國家環境政策法》(National Environmental Policy Act),可以加速合格資料中心基礎建設建置的環境審查豁免措施。 (2) 環境品質委員會應考量資料中心基礎建設對環境產生之影響,制定新的環境審查豁免措施。 4. 對符合FAST-41計畫(FAST-41 program)要求之資料中心基礎建設,加速其取得建設相關許可之過程。 該計畫名稱及內涵緣起於《修復美國地面運輸法》第41章節(Title 41 of the Fixing America's Surface Transportation Act)。一般而言,參與該計畫之建設,需滿足指定投資額、受指定組織贊助、於指定地點興建,或合乎特定環境法規等要求。合乎計畫要求之建設,可與主管機關協調取得建設相關許可之時間,並由聯邦許可改善指導委員會(The Federal Permitting Improvement Steering Council)下屬團隊協助進行專案管理。 5. 環境保護局(Environmental Protection Agency)局長應依法定權限,加速確認可供合格資料中心基礎建設使用的棕地(brownfields)。 依美國環境保護局定義,棕地是指含有危險物質、污染物的土地,因開發利用困難,需進行養護、排除開發障礙,或以其他方式開發。 6. 內政部、能源部應依法確定適合用於建設資料中心的土地,適當授權合格資料中心基礎建設業者在聯邦土地上進行建造。 參酌該行政命令意指,美國政府期許減少環境政策對人工智慧資料中心及相關設施的影響,透過快速推動建設進程,確保美國經濟繁榮,以及在科學、數位經濟領域的領導地位。
法國通過新的加密貨幣監管法律2017年5月,馬克宏政府上任後,積極推動新興創新技術,以期將法國建設為新創國度。在此施政方針下,政府於2018年間提出「企業成長與轉型法案」(The PACTE draft Bill),並於2019年4月11日經法國國民議會通過,係為《企業成長與轉型法》(La loi PACTE)。 本法主要針對六大議題做改革,包含:企業成長及交接程序、擴增企業社會責任及員工參與率、資金、數位轉型及創新、行政流程簡化、提高國際競爭力。在「數位轉型及創新」部分,該法為「首次代幣發行(Initial Coin Offering, ICO)」和「數位資產服務提供者(Digital Assets Services Providers, DASP)」建立一法律框架,其主要制度內容,大抵有四: (一) ICO之選擇性憑證(Optional visa): ICO發起人在符合一定要件時,「得」向法國金融市場管理局(Autoritédesmarchésfinanciers, AMF)繳交相關資訊文件,以獲憑證;如未為之,募資仍屬合法,惟不得公開徵求資金、發起資助,僅可進行廣告活動。 再者,獲得選擇性憑證必須符合以下要件,包含: 代幣發行人在法國成立或註冊合法之法人組織; 提供的資料文件上,須載明代幣發行、籌資計畫、公司等所有相關資訊; 必須有一個系統機制,來監控和保護在銷售過程中收集的資產; 遵守反洗錢(Anti money Laundering)和恐怖份子籌資活動(terrorist financing)相關規定。 (二) 數位資產服務提供者之選擇性特許(Optional license): 數位資產服務提供者,「得」主動向AMF申請特許並受其監督;如未為之,仍屬合法,惟不得公開徵求資金、發起資助,僅可進行廣告活動。 然而,須注意的是,無論服務提供者是否申請特許,凡「向第三方提供數位資產保管服務」或「買受數位資產以換取法定貨幣」者,皆須至AMF辦理註冊事宜。 (三) 允許二種資金可投資於數位資產: 該法指出,「符合市場流通性和估價規則之專業投資基金」和「專業私募股權投資基金」可投資於數位資產。 (四) 強化AMF之監管權力: 該法賦予主管機關AMF一定之監管權力,包含: 得監督「已獲選擇性憑證之ICO」及「經選擇性特許之服務提供者」,於其未遵守法規時,施以制裁。 得公布違法ICO及服務提供者之「黑名單」。 得封鎖數位資產服務之詐欺網站。
初探物聯網的資通安全與法制政策趨勢初探物聯網的資通安全與法制政策趨勢 資訊工業策進會科技法律研究所 2021年03月25日 壹、事件摘要 在5G網路技術下,物聯網(Internet of Things, IoT)的智慧應用正逐步滲入各場域,如智慧家庭、車聯網、智慧工廠及智慧醫療等。惟傳統的資安防護已不足以因應萬物聯網的技術發展,需要擴大供應鏈安全,以避免成為駭客的突破口[1]。自2019年5月「布拉格提案[2]」(Prague Proposal)提出後,美國、歐盟皆有相關法制政策,試圖建立各類資通訊設備、系統與服務之安全要求,以強化物聯網及相關供應鏈之資安防護。是以,本文觀測近年來美國及歐盟主要的物聯網安全法制政策,以供我國借鏡。 貳、重點說明 一、美國物聯網安全法制政策 (一)核心網路與機敏性設備之高度管制 1.潔淨網路計畫 基於資訊安全及民眾隱私之考量,美國政府於2020年4月提出「5G潔淨路徑倡議[3]」(5G Clean Path initiative),並區分成五大構面,包括:潔淨電信(Clean Carrier)、潔淨商店(Clean Store)、潔淨APPs(Clean Apps)、潔淨雲(Clean Cloud)及潔淨電纜(Clean Cable);上述構面涵蓋之業者只可與受信賴的供應鏈合作,其可信賴的標準包括:設備供應商設籍國的政治與治理、設備供應商之商業行為、(高)風險供應商網路安全風險緩和標準,以及提升供應商信賴度之政府作為[4]。 2.政府部門之物聯網安全 美國於2020年12月通過《物聯網網路安全法[5]》(IoT Cybersecurity Improvement Act of 2020),旨在提升聯邦政府購買和使用物聯網設備的安全性要求,進而鼓勵供應商從設計上導入安全防範意識。本法施行後,美國聯邦政府機關僅能採購和使用符合最低安全標準的設備,將間接影響欲承接政府物聯網訂單之民間業者及產業標準[6]。 另外,美國國防部亦推行「網路安全成熟度模型認證[7]」(Cybersecurity Maturity Model Certification, CMMC),用以確保國防工程之承包商具備適當的資訊安全水平,確保政府敏感文件(未達機密性標準)受到妥適保護。透過強制性認證,以查核民間承包商是否擁有適當的網路安全控制措施,消除供應鏈中的網路漏洞,保護承包商所持有的敏感資訊。 (二)物聯網安全標準與驗證 有鑑於產業界亟需物聯網產品之安全標準供參考,美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)提出「物聯網網路安全計畫」,並提出各項標準指南,如IR 8228:管理物聯網資安及隱私風險、IR 8259(草案):確保物聯網裝置之核心資安基準等。 此外,美國參議院民主黨議員Ed Markey亦曾提出「網路盾」草案[8](Cyber Shield Act of 2019),欲建立美國物聯網設備驗證標章(又稱網路盾標章),作為物聯網產品之自願性驗證標章,表彰該產品符合特定產業之資訊安全與資料保護標準。 二、歐盟物聯網安全法制政策 (一)核心網路安全建議與風險評估 歐盟執委會於2019年3月26日提出「5G網路資通安全建議[9] 」,認為各會員國應評鑑5G網路資通安全之潛在風險,並採取必要安全措施。又在嗣後提出之「5G網路安全整合風險評估報告[10]」中提及,5G網路的技術漏洞可能來自軟體、硬體或安全流程中的潛在缺陷所導致。雖然現行3G、4G的基礎架構仍有許多漏洞,並非5G網路所特有,但隨著技術的複雜性提升、以及經濟及社會對於網路之依賴日益加深,必須特別關注。同時,對供應商的依賴,可能會擴大攻擊表面,也讓個別供應商風險評估變得特別重要,包含供應商與第三國政府關係密切、供應商之產品製造可能會受到第三國政府施壓。 是故,各會員國應加強對電信營運商及其供應鏈的安全要求,包括評估供應商的背景、管控高風險供應商的裝置、減少對單一供應商之依賴性(多元化分散風險)等。其次,機敏性基礎設施禁止高風險供應商的參與。 (二)資通安全驗證制度 歐盟2019年6月27日生效之《網路安全法[11]》(Cybersecurity Act),責成歐盟網路與資訊安全局(European Union Agency for Cybersecurity, ENISA)協助建立資通訊產品、服務或流程之資通安全驗證制度,確保資通訊產品、服務或流程,符合對應的安全要求事項,包含:具備一定的安全功能,且經評估能減少資通安全事件及網路攻擊風險。原則上,取得資安驗證之產品、服務及流程可通用於歐盟各會員國,將有助於供應商跨境營運,同時能協助消費者識別產品或服務的安全性。目前此驗證制度為自願性,即供應商可以自行決定是否對將其產品送交驗證。 參、事件評析 我國在「資安即國安」之大架構下,行政院資通安全處於2020年底提出之國家資通安全發展方案(110年至113年)草案[12],除了持續強化國家資安防禦外,對於物聯網應用安全亦多有關注,其間,策略四針對物聯網應用之安全,將輔導企業強化數位轉型之資安防護能量,並強化供應鏈安全管理,包括委外供應鏈風險管理及資通訊晶片產品安全性。 若進一步參考美國與歐盟的作法,我國後續法制政策,或可區分兩大性質主體,採取不同管制密度,一主體為受資安法規管等高度資安需求對象,包括公務機關及八大領域關鍵基礎設施之業者與其供應鏈,其必須遵守既有資安法課予之高規格的安全標準,未來宜完善資通設備使用規範,包括:明確設備禁用之法規(黑名單)、高風險設備緩解與准用機制(白名單)。 另一主體則為非資安法管制對象,亦即一般性產品及服務,目前可採軟性方式督促業者及消費者對於資通設備安全的重視,是以法制政策推行重點包括:發展一般性產品及服務的自我驗證、推動建構跨業安全標準與稽核制度,以及鼓勵聯網設備進行資安驗證與宣告。 [1]經濟部工業局,〈物聯網資安三部曲:資安團隊+設備安全+供應鏈安全〉,2020/08/31,https://www.acw.org.tw/News/Detail.aspx?id=1149 (最後瀏覽日:2020/12/06)。 [2]2019年5月3日全球32個國家的政府官員包括歐盟、北大西洋公約組織 (North Atlantic Treaty Organization, NATO)的代表,出席由捷克主辦的布拉格5G 安全會議 (Prague 5G Security Conference),商討對5G通訊供應安全問題。本會議結論,即「布拉格提案」,建構出網路安全框架,強調5G資安並非僅是技術議題,而包含技術性與非技術性之風險,國家應確保整體性資安並落實資安風險評估等,而其中最關鍵者,為確保5G基礎建設的供應鏈安全。是以,具體施行應從政策、技術、經濟、安全性、隱私及韌性(Security, Privacy, and Resilience)之四大構面著手。Available at GOVERNMENT OF THE CZECH REPUBLIC, The Prague Proposals, https://www.vlada.cz/en/media-centrum/aktualne/prague-5g-security-conference-announced-series-of-recommendations-the-prague-proposals-173422/ (last visited Jan. 22, 2021). [3]The Clean Network, U.S Department of State, https://2017-2021.state.gov/the-clean-network/index.html (last visited on Apr. 09, 2021);The Tide Is Turning Toward Trusted 5G Vendors, U.S Department of State, Jun. 24, 2020, https://2017-2021.state.gov/the-tide-is-turning-toward-trusted-5g-vendors/index.html (last visited Apr. 09, 2021). [4]CSIS Working Group on Trust and Security in 5G Networks, Criteria for Security and Trust in Telecommunications Networks and Services (2020), https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/200511_Lewis_5G_v3.pdf (last visited Nov. 09, 2020). [5]H.R. 1668: IoT Cybersecurity Improvement Act of 2020, https://www.govtrack.us/congress/bills/116/hr1668 (last visited Mar. 14, 2021). [6]孫敏超,〈美國於2020年12月4日正式施行聯邦《物聯網網路安全法》〉,2020/12,https://stli.iii.org.tw/article-detail.aspx?no=64&tp=1&d=8583 (最後瀏覽日:2021/02/19)。 [7]U.S. DEPARTMENT OF DEFENSE, Cybersecurity Maturity Model Certification, https://www.acq.osd.mil/cmmc/draft.html (last visited Nov. 09, 2020). [8]H.R.4792 - Cyber Shield Act of 2019, CONGRESS.GOV, https://www.congress.gov/bill/116th-congress/house-bill/4792/text (last visited Feb. 19, 2021). [9]COMMISSION RECOMMENDATION Cybersecurity of 5G networks, Mar. 26, 2019, https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019H0534&from=GA (last visited Feb. 18, 2021). [10]European Commission, Member States publish a report on EU coordinated risk assessment of 5G networks security, Oct. 09, 2019, https://ec.europa.eu/commission/presscorner/detail/en/IP_19_6049 (last visited Feb. 18, 2021). [11]Regulation (EU) 2019/881 of the European Parliament and of the Council of 17 April 2019 on ENISA and on Information and Communications Technology Cybersecurity Certification and Repealing Regulation (EU) No 526/2013 (Cybersecurity Act), Council Regulation 2019/881, 2019 O.J. (L151) 15. [12]行政院資通安全處,〈國家資通安全發展方案(110年至113年)草案〉,2020/12,https://download.nccst.nat.gov.tw/attachfilehandout/%E8%AD%B0%E9%A1%8C%E4%BA%8C%EF%BC%9A%E7%AC%AC%E5%85%AD%E6%9C%9F%E5%9C%8B%E5%AE%B6%E8%B3%87%E9%80%9A%E5%AE%89%E5%85%A8%E7%99%BC%E5%B1%95%E6%96%B9%E6%A1%88(%E8%8D%89%E6%A1%88)V3.0_1091128.pdf (最後瀏覽日:2021/04/09)。